Skip to main content

State-of-the art concepts and future directions in modelling oxygen consumption and lactate concentration in cycling exercise

Abstract

Purpose

Bioenergetic models are used in cycling to estimate the acute physiological response in terms of oxygen consumption (\({\dot{\text{V}}}\)O2) and lactate concentration ([La]). First, our aim is to review the bioenergetic modelling literature, presenting historical evolution of concepts, techniques and related limitations. Second, our aim is to discuss how and where new approaches can stem and evolve.

Methods

This is a narrative review, where different modelling solutions are compared and qualitatively discussed. First, the principal features of the \({\dot{\text{V}}}\)O2 and [La] kinetics are presented, and then the models available in the literature are compared in light of what aspects of the physiological responses they can describe.

Results

Currently, models can detect most features of \({\dot{\text{V}}}\)O2 and [La] kinetics, but no single existing model appears appropriate for every exercising conditions. Limitations hindering the creation of an ultimate model are: the large variability of an exercise, the required mathematical complexity, and lack of reliable physiological data. To overcome these issues, new modelling solutions are being explored in the emerging AI technologies. However, in AI-models, parameters do not have direct physiological meaning and require massive amounts of experimental data for parameter calibration.

Conclusions

Despite the great efforts made by model developers and exercise physiologists, universal modelling solutions for the variety of potential exercising conditions remain unavailable. At present, further research is needed to assess the accuracy and predictive power of AI models to move the method forward in our field, as it is being done so in many others.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Faria EW, Parker DL, Faria IE (2005) The science of cycling: physiology and training: part 1. Sports Med Auckl NZ 35:285–312

    Article  Google Scholar 

  2. 2.

    Grassi B, Poole DC, Richardson RS et al (1996) Muscle O2 uptake kinetics in humans: implications for metabolic control. J Appl Physiol Bethesda Md 1985 80:988–998

    CAS  Google Scholar 

  3. 3.

    Romijn JA, Coyle EF, Sidossis LS et al (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab 265:E380–E391. https://doi.org/10.1152/ajpendo.1993.265.3.E380

    CAS  Article  Google Scholar 

  4. 4.

    Nummela A, Rusko H (1995) Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes. Int J Sports Med 16:522–527. https://doi.org/10.1055/s-2007-973048

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Ferretti G, Fagoni N, Taboni A et al (2017) The physiology of submaximal exercise: the steady state concept. Respir Physiol Neurobiol 246:76–85. https://doi.org/10.1016/j.resp.2017.08.005

    Article  PubMed  Google Scholar 

  6. 6.

    di Prampero PE, Ferretti G (1999) The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol 118:103–115

    Article  PubMed  Google Scholar 

  7. 7.

    Jones AM, Vanhatalo A (2017) The ‘critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med 47:65–78. https://doi.org/10.1007/s40279-017-0688-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Padilla S, Mujika I, Orbananos J et al (2001) Exercise intensity and load during mass-start stage races in professional road cycling. Med Sci Sports Exerc 33:796–802

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Hawley JA, Leckey JJ (2015) Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med 45:5–12. https://doi.org/10.1007/s40279-015-0400-1

    Article  PubMed Central  Google Scholar 

  10. 10.

    Antonutto G, Di Prampero PE (1995) The concept of lactate threshold: a short review. J Sports Med Phys Fitness 35:6–12

    CAS  PubMed  Google Scholar 

  11. 11.

    Lucia A, Hoyos J, Chicharro JL (2001) Physiology of professional road cycling. Sports Med 31:325–337. https://doi.org/10.2165/00007256-200131050-00004

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: How valid are they? Sports Med 39:469–490. https://doi.org/10.2165/00007256-200939060-00003

    Article  PubMed  Google Scholar 

  13. 13.

    Keir DA, Fontana FY, Robertson TC et al (2015) Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc 47:1932–1940

    Article  PubMed  Google Scholar 

  14. 14.

    Menaspà P, Quod M, Martin D et al (2015) Physical demands of sprinting in professional road cycling. Int J Sports Med 36:1058–1062

    Article  PubMed  Google Scholar 

  15. 15.

    Sahlin K (2014) Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med 44:167–173. https://doi.org/10.1007/s40279-014-0256-9

    Article  PubMed Central  Google Scholar 

  16. 16.

    Burnley M, Jones AM (2007) Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci 7:63–79. https://doi.org/10.1080/17461390701456148

    Article  Google Scholar 

  17. 17.

    Lundby C, Jacobs RA (2016) Adaptations of skeletal muscle mitochondria to exercise training: mitochondria and exercise. Exp Physiol 101:17–22. https://doi.org/10.1113/EP085319

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Ettema G, Loras HW (2009) Efficiency in cycling: a review. Eur J Appl Physiol 106:1–14

    Article  PubMed  Google Scholar 

  19. 19.

    Whipp BJ, Ward SA, Rossiter HB (2005) Pulmonary O2 uptake during exercise: conflating muscular and cardiovascular responses. Med Sci Sports Exerc 37:1574–1585

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Brooks GA (2000) Intra-and extra-cellular lactate shuttles. Med Sci Sports Exerc 32:790–799

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Rossiter HB, Ward SA, Kowalchuk JM et al (2002) Dynamic asymmetry of phosphocreatine concentration and O 2 uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. J Physiol 541:991–1002. https://doi.org/10.1113/jphysiol.2001.012910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    di Prampero PE (1981) Energetics of muscular exercise. Rev Physiol Biochem Pharmacol 89:143–222

    Article  PubMed  Google Scholar 

  23. 23.

    Gastin PB (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 31:725–741. https://doi.org/10.2165/00007256-200131100-00003

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Tomlin DL, Wenger HA (2001) The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med 31:1–11. https://doi.org/10.2165/00007256-200131010-00001

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle. Sports Med 43:313–338

    Article  PubMed  Google Scholar 

  26. 26.

    Bosquet L, Léger L, Legros P (2002) Methods to determine aerobic endurance. Sports Med 32:675–700. https://doi.org/10.2165/00007256-200232110-00002

    Article  PubMed  Google Scholar 

  27. 27.

    Billat LV (1996) Use of blood lactate measurements for prediction of exercise performance and for control of training: recommendations for long-distance running. Sports Med 22:157–175. https://doi.org/10.2165/00007256-199622030-00003

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Olds T (2001) Modelling human locomotion. Sports Med 31:497–509

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Jeukendrup AE, Martin J (2001) Improving cycling performance. Sports Med 31:559–569

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Sundström D, Carlsson P, Tinnsten M (2014) Comparing bioenergetic models for the optimisation of pacing strategy in road cycling. Sports Eng 17:207–215. https://doi.org/10.1007/s12283-014-0156-0

    Article  Google Scholar 

  31. 31.

    Barbosa LF, Denadai BS, Greco CC (2016) Endurance performance during severe-intensity intermittent cycling: effect of exercise duration and recovery type. Front Physiol 7:602. https://doi.org/10.3389/fphys.2016.00602

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Beltrame T, Amelard R, Villar R et al (2016) Estimating oxygen uptake and energy expenditure during treadmill walking by neural network analysis of easy-to-obtain inputs. J Appl Physiol 121:1226–1233. https://doi.org/10.1152/japplphysiol.00600.2016

    Article  PubMed  Google Scholar 

  33. 33.

    Passfield L, Jg H, Jobson S et al (2017) Knowledge is power: issues of measuring training and performance in cycling. J Sports Sci 35:1426–1434. https://doi.org/10.1080/02640414.2016.1215504

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Louhevaara V, Ilmarinen J, Oja P (1985) Comparison of three field methods for measuring oxygen consumption. Ergonomics 28:463–470. https://doi.org/10.1080/00140138508963155

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Beneke R, Leithäuser RM, Ochentel O (2011) Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform 6:8–24

    Article  PubMed  Google Scholar 

  36. 36.

    Lamarra N, Whipp BJ, Ward SA, Wasserman K (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol Bethesda Md 1985 62:2003–2012

    CAS  Google Scholar 

  37. 37.

    Beneke R, Alkhatib A (2014) High cycling cadence reduces carbohydrate oxidation at given low intensity metabolic rate. Biol Sport 32:27–33. https://doi.org/10.5604/20831862.1126325

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Burnley M, Jones AM, Carter H, Doust JH (2000) Effects of prior heavy exercise on phase II pulmonary oxygen uptake kinetics during heavy exercise. J Appl Physiol Bethesda Md 1985 89:1387–1396

    CAS  Google Scholar 

  39. 39.

    Chatel B, Bret C, Edouard P et al (2016) Lactate recovery kinetics in response to high-intensity exercises. Eur J Appl Physiol 116:1455–1465. https://doi.org/10.1007/s00421-016-3420-0

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wasserman K, Hansen JE, Sue DY et al (2005) Principles of exercise testing and interpretation: including pathophysiology and clinical applications. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  41. 41.

    Barstow TJ, Molé PA (1991) Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J Appl Physiol 71:2099–2106

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Jones AM, Poole DC (2013) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, Abingdon

    Google Scholar 

  43. 43.

    Stegmann H, Kindermann W, Schnabel A (1981) Lactate kinetics and individual anaerobic threshold. Int J Sports Med 02:160–165. https://doi.org/10.1055/s-2008-1034604

    CAS  Article  Google Scholar 

  44. 44.

    Brooks GA (1991) Current concepts in lactate exchange. Med Sci Sports Exerc 23:895–906

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    di Prampero PE, Margaria R (1968) Relationship between O2 consumption, high energy phosphates and the kinetics of the O2 debt in exercise. Pflüg Arch 304:11–19. https://doi.org/10.1007/BF00586714

    Article  Google Scholar 

  47. 47.

    Cerretelli P, Pendergast D, Paganelli WC, Rennie DW (1979) Effects of specific muscle training on VO2 on-response and early blood lactate. J Appl Physiol 47:761–769

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Lador F, Azabji Kenfack M, Moia C et al (2006) Simultaneous determination of the kinetics of cardiac output, systemic O2 delivery, and lung O2 uptake at exercise onset in men. Am J Physiol Regul Integr Comp Physiol 290:R1071–R1079. https://doi.org/10.1152/ajpregu.00366.2005

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Ferretti G (2015) Energetics of muscular exercise. Springer, Cham

    Book  Google Scholar 

  50. 50.

    Hughson RL, Cochrane JE, Butler GC (1993) Faster O2 uptake kinetics at onset of supine exercise with than without lower body negative pressure. J Appl Physiol 75:1962–1967. https://doi.org/10.1152/jappl.1993.75.5.1962

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Faisal A, Beavers KR, Robertson AD, Hughson RL (2009) Prior moderate and heavy exercise accelerate oxygen uptake and cardiac output kinetics in endurance athletes. J Appl Physiol 106:1553–1563. https://doi.org/10.1152/japplphysiol.91550.2008

    Article  PubMed  Google Scholar 

  52. 52.

    Beltrame T, Hughson RL (2017) Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans: aerobic system linearity in frequency domain. Exp Physiol 102:563–577. https://doi.org/10.1113/EP086145

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Rossiter HB (2010) Exercise: kinetic considerations for gas exchange. In: Terjung R (ed) Comprehensive Physiology. Wiley, Hoboken

    Google Scholar 

  54. 54.

    Binzoni T, Ferretti G, Schenker K, Cerretelli P (1992) Phosphocreatine hydrolysis by 31P-NMR at the onset of constant-load exercise in humans. J Appl Physiol 73:1644–1649. https://doi.org/10.1152/jappl.1992.73.4.1644

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Wasserman K (1987) Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation 76:VI29–VI39

    CAS  PubMed  Google Scholar 

  56. 56.

    Cerretelli P, Shindell D, Pendergast D et al (1977) Oxygen uptake transients at the onset and offset of arm and leg work. Respir Physiol 30:81–97

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Gaesser GA, Brooks GA (1984) Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc 16:29–43

    CAS  PubMed  Google Scholar 

  58. 58.

    Freund H, Gendry P (1978) Lactate kinetics after short strenuous exercise in man. Eur J Appl Physiol 39:123–135

    Article  CAS  Google Scholar 

  59. 59.

    Lamarra N (1990) Variables, constants, and parameters: clarifying the system structure. Med Sci Sports Exerc 22:88–95

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Swanson GD (1990) Assembling control models from pulmonary gas exchange dynamics. Med Sci Sports Exerc 22:80–87

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Casaburi R, Whipp BJ, Wasserman K, Koyal SN (1978) Ventilatory and gas exchange responses to cycling with sinusoidally varying pedal rate. J Appl Physiol 44:97–103. https://doi.org/10.1152/jappl.1978.44.1.97

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Haouzi P, Fukuba Y, Casaburi R et al (1993) O2 uptake kinetics above and below the lactic acidosis threshold during sinusoidal exercise. J Appl Physiol 75:1683–1690. https://doi.org/10.1152/jappl.1993.75.4.1683

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Bangsbo J (2000) Physiology of intermittent exercise. Exerc Sport Sci 5:53–65

    Google Scholar 

  64. 64.

    Gharbi A, Chamari K, Kallel A et al (2008) Lactate kinetics after intermittent and continuous exercise training. J Sports Sci Med 7:279

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Yano T, Yunoi T, Horiuchi M (2000) Kinetics of oxygen uptake during decremental ramp exercise. J Sports Med Phys Fitness 40:11

    CAS  PubMed  Google Scholar 

  66. 66.

    Boone J, Bourgois J (2012) The oxygen uptake response to incremental ramp exercise. Sports Med 42:511

    Article  PubMed  Google Scholar 

  67. 67.

    Fukuba Y, UsuI S, Munaka M (1989) New mathematical modelling of blood lactate kinetics during ramp mode exercise in man. Jpn J Physiol 39:325–334

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Oyono-Enguelle S, Marbach J, Heitz A et al (1990) Lactate removal ability and graded exercise in humans. J Appl Physiol Bethesda Md 1985 68:905–911

    CAS  Google Scholar 

  69. 69.

    Grassi B, Quaresima V, Marconi C et al (1999) Blood lactate accumulation and muscle deoxygenation during incremental exercise. J Appl Physiol Bethesda Md 1985 87:348–355

    CAS  Google Scholar 

  70. 70.

    Scheuermann BW, Hoelting BD, Noble ML, Barstow TJ (2001) The slow component of O2 uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans. J Physiol 531:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Artiga Gonzalez A, Bertschinger R, Brosda F et al (2015) Modeling oxygen dynamics under variable work rate. SCITEPRESS-Science and Technology Publications, Setúbal, pp 198–207

    Google Scholar 

  72. 72.

    Moxnes JF, Sandbakk Ø (2012) The kinetics of lactate production and removal during whole-body exercise. Theor Biol Med Model 9:7

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Poole DC, Burnley M, Vanhatalo A et al (2016) Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc 48:2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Wilcox SL, Broxterman RM, Barstow TJ (2016) Constructing quasi-linear V̇O2 responses from nonlinear parameters. J Appl Physiol 120:121–129. https://doi.org/10.1152/japplphysiol.00507.2015

    Article  PubMed  Google Scholar 

  75. 75.

    Özyener F, Rossiter HB, Ward SA, Whipp BJ (2001) Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol 533:891–902. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00891.x

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Gaesser GA, Poole DC (1996) The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 24:35–70

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Esposito F, Schena F, Ferretti G (2006) Phase III \({\dot{\text{V}}}\)O2 increase does not lead to \({\dot{\text{V}}}\)O2 values higher than \({\dot{\text{V}}}\)O2 max during prolonged intense exercises in humans. Sport Sci Health 1:146–152

    Article  Google Scholar 

  78. 78.

    Iannetta D, Inglis EC, Fullerton C et al (2018) Metabolic and performance-related consequences of exercising at and slightly above MLSS. Scand J Med Sci Sports 28:2481–2493. https://doi.org/10.1111/sms.13280

    Article  PubMed  Google Scholar 

  79. 79.

    Kalis J, Freund BJ, Joyner MJ et al (1988) Effect of beta-blockade on the drift in O2 consumption during prolonged exercise. J Appl Physiol 64:753–758

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    Grassi B, Rossiter HB, Zoladz JA (2015) Skeletal muscle fatigue and decreased efficiency: two sides of the same coin? Exerc Sport Sci Rev 43:75–83

    Article  PubMed  Google Scholar 

  81. 81.

    Bahr R (1992) Excess postexercise oxygen consumption–magnitude, mechanisms and practical implications. Acta Physiol Scand Suppl 605:1

    CAS  PubMed  Google Scholar 

  82. 82.

    Billat V, Morton R, Blondel N et al (2000) Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur J Appl Physiol 82:178–187

    Article  CAS  PubMed  Google Scholar 

  83. 83.

    Hill DW, Poole DC, Smith JC (2002) The relationship between power and the time to achieve VO(2max). Med Sci Sports Exerc 34:709–714

    PubMed  Google Scholar 

  84. 84.

    Hauser T, Adam J, Schulz H (2013) Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling. Int J Sports Med 35:517–521. https://doi.org/10.1055/s-0033-1353176

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Goodwin ML, Harris JE, Hernández A, Gladden LB (2007) Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol 1:558–569

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Minetti AE (2011) Bioenergetics and biomechanics of cycling: the role of “internal work”. Eur J Appl Physiol 111:323–329

    Article  PubMed  Google Scholar 

  87. 87.

    Francescato M, Girardis M, Di Prampero P (1995) Oxygen cost of internal work during cycling. Eur J Appl Physiol 72:51–57

    Article  CAS  Google Scholar 

  88. 88.

    Bonjour J, Capelli C, Antonutto G et al (2010) Determinants of oxygen consumption during exercise on cycle ergometer: the effects of gravity acceleration. Respir Physiol Neurobiol 171:128–134. https://doi.org/10.1016/j.resp.2010.02.013

    Article  PubMed  Google Scholar 

  89. 89.

    Di Prampero P, Cortili G, Mognoni P, Saibene F (1979) Equation of motion of a cyclist. J Appl Physiol 47:201–206

    Article  PubMed  Google Scholar 

  90. 90.

    Brooks HP, Andrews MH, Gray AJ, Osborne MA (2013) Comparison of models for the physiological estimation of internal mechanical power in cycling. J Sci Cycl 2:58

    Google Scholar 

  91. 91.

    Abbiss CR, Peiffer JJ, Laursen PB (2009) Optimal cadence selection during cycling. Int SportMed J 10:1–15

    Google Scholar 

  92. 92.

    Mcmurray RG, Soares J, Caspersen CJ, Mccurdy T (2014) Examining variations of resting metabolic rate of adults: a public health perspective. Med Sci Sports Exerc 46:1352–1358. https://doi.org/10.1249/MSS.0000000000000232

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Bell C, Paterson DH, Kowalchuk JM et al (2001) A comparison of modelling techniques used to characterise oxygen uptake kinetics during the on-transient of exercise. Exp Physiol 86:667–676

    Article  CAS  PubMed  Google Scholar 

  94. 94.

    Spencer MD, Murias JM, Kowalchuk JM, Paterson DH (2011) Pulmonary O2 uptake and muscle deoxygenation kinetics are slowed in the upper compared with lower region of the moderate-intensity exercise domain in older men. Eur J Appl Physiol 111:2139–2148. https://doi.org/10.1007/s00421-011-1851-1

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Jones AM, Burnley M (2009) Oxygen uptake kinetics: an underappreciated determinant of exercise performance. Int J Sports Physiol Perform 4:524

    Article  PubMed  Google Scholar 

  96. 96.

    Millet G, Libicz S, Borrani F et al (2003) Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol 90:50–57

    Article  CAS  PubMed  Google Scholar 

  97. 97.

    Bangsbo J (1998) Quantification of anaerobic energy production during intense exercise. Med Sci Sports Exerc 30:47–52

    Article  CAS  PubMed  Google Scholar 

  98. 98.

    Whipp BJ, Ward SA (1990) Physiological determinants of pulmonary gas exchange kinetics during exercise. Med Sci Sports Exerc 22:62–71

    Article  CAS  PubMed  Google Scholar 

  99. 99.

    Lador F, Tam E, Azabji Kenfack M et al (2008) Phase I dynamics of cardiac output, systemic O2 delivery, and lung O2 uptake at exercise onset in men in acute normobaric hypoxia. AJP Regul Integr Comp Physiol 295:R624–R632. https://doi.org/10.1152/ajpregu.00797.2007

    CAS  Article  Google Scholar 

  100. 100.

    Bearden SE, Henning PC, Bearden TA, Moffatt RJ (2004) The slow component of VO2 kinetics in very heavy and fatiguing square-wave exercise. Eur J Appl Physiol 91:586–594. https://doi.org/10.1007/s00421-003-1009-x

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Whipp B, Rossiter H, Ward S (2002) Exertional oxygen uptake kinetics: a stamen of stamina? Biochem Soc Trans 30:237–247

    Article  CAS  PubMed  Google Scholar 

  102. 102.

    Stirling J, Zakynthinaki M, Saltin B (2005) A model of oxygen uptake kinetics in response to exercise: including a means of calculating oxygen demand/deficit/debt. Bull Math Biol 67:989–1015

    Article  CAS  PubMed  Google Scholar 

  103. 103.

    Stirling J, Zakynthinaki M, Billat V (2008) Modeling and analysis of the effect of training on kinetics and anaerobic capacity. Bull Math Biol 70:1348–1370

    Article  CAS  PubMed  Google Scholar 

  104. 104.

    Artiga Gonzalez A (2016) A comparison of models for oxygen consumption. In: Proceedings of the workshop modelling in endurance sports. University of Konstanz

  105. 105.

    Whipp BJ, Stirling JR, Zakynthinaki MS (2009) Point: counterpoint. The kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phases. J Appl Physiol 107:1669

    Article  Google Scholar 

  106. 106.

    Ferguson BS, Rogatzki MJ, Goodwin ML et al (2018) Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 118:691–728. https://doi.org/10.1007/s00421-017-3795-6

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    Green HJ, Hughson RL, Orr GW, Ranney DA (1983) Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. J Appl Physiol 54:1032–1038

    Article  CAS  PubMed  Google Scholar 

  108. 108.

    Hughson RL, Weisiger KH, Swanson GD (1987) Blood lactate concentration increases as a continuous function in progressive exercise. J Appl Physiol Bethesda Md 1985 62:1975–1981

    CAS  Google Scholar 

  109. 109.

    Zouloumian P, Freund H (1981) Lactate after exercise in man: II. Mathematical model. Eur J Appl Physiol 46:135–147. https://doi.org/10.1007/BF00428866

    CAS  Article  Google Scholar 

  110. 110.

    Zouloumian P, Freund H (1981) Lactate after exercise in man: III. Properties of the compartment model. Eur J Appl Physiol 46:149–160. https://doi.org/10.1007/BF00428867

    CAS  Article  Google Scholar 

  111. 111.

    Gharbi A, Chamari K, Kallel A et al (2008) Lactate kinetics after intermittent and continuous exercise training. J Sports Sci Med 7:279

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Beneke R, Hütler M, Jung M, Leithäuser RM (2005) Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J Appl Physiol 99:499–504

    Article  CAS  PubMed  Google Scholar 

  113. 113.

    Taoutaou Z, Granier P, Mercier B et al (1996) Lactate kinetics during passive and partially active recovery in endurance and sprint athletes. Eur J Appl Physiol 73:465–470

    Article  CAS  Google Scholar 

  114. 114.

    Messonnier L, Freund H, Denis C et al (2006) Effects of training on lactate kinetics parameters and their influence on short high-intensity exercise performance. Int J Sports Med 27:60–66

    Article  CAS  PubMed  Google Scholar 

  115. 115.

    Freund H, Zouloumian P (1981) Lactate after exercise in man: IV. Physiological observations and model predictions. Eur J Appl Physiol 46:161–176. https://doi.org/10.1007/BF00428868

    CAS  Article  Google Scholar 

  116. 116.

    Freund H, Zouloumian P (1981) Lactate after exercise in man: I. Evolution kinetics in arterial blood. Eur J Appl Physiol 46:121–133. https://doi.org/10.1007/BF00428865

    CAS  Article  Google Scholar 

  117. 117.

    Margaria R, Cerretelli P, Diprampero PE et al (1963) Kinetics and mechanism of oxygen debt contraction in man. J Appl Physiol 18:371–377

    Article  CAS  PubMed  Google Scholar 

  118. 118.

    Zignoli A, Savoldelli A, Biral F et al (2014) Application to cycling of a bioenergetic model: towards a multi-level biomechanical model for global cyclist performance analysis. J Sci Cycl 3:76

    Google Scholar 

  119. 119.

    Dahmen T (2012) Optimization of pacing strategies for cycling time trials using a smooth 6-parameter endurance model. In: Yong J (ed) Proceedings of 2012 pre-olympic congress on sports science and computer science in sport. World Academic Union, Edgbaston

    Google Scholar 

  120. 120.

    Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–75

    Article  Google Scholar 

  121. 121.

    Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Article  Google Scholar 

  122. 122.

    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science, IEEE, pp 39–43

  123. 123.

    Nocedal J, Wright S (2006) Numerical optimization. Springer, Berlin

    Google Scholar 

  124. 124.

    Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB 1:365–374

    Article  CAS  Google Scholar 

  125. 125.

    Batterham AM, Hopkins WG (2006) Making meaningful inferences about magnitudes. Int J Sports Physiol Perform 1:50

    Article  PubMed  Google Scholar 

  126. 126.

    Hopkins WG, Hawley JA, Burke LM (1999) Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc 31:472–485

    Article  CAS  PubMed  Google Scholar 

  127. 127.

    Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30:1–15

    Article  CAS  PubMed  Google Scholar 

  128. 128.

    Robergs RA, Dwyer D, Astorino T (2010) Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Med 40:95–111

    Article  PubMed  Google Scholar 

  129. 129.

    Stirling JR, Zakynthinaki M (2009) Counterpoint: the kinetics of oxygen uptake during muscular exercise do not manifest time-delayed phases. J Appl Physiol 107:1665–1667. https://doi.org/10.1152/japplphysiol.00158.2009a

    Article  PubMed  Google Scholar 

  130. 130.

    Medbø JI, Mamen A, Holt Olsen O, Evertsen E (2000) Examination of four different instruments for measuring blood lactate concentration. Scand J Clin Lab Invest 60:367–380. https://doi.org/10.1080/003655100750019279

    Article  PubMed  Google Scholar 

  131. 131.

    Francescato MP, Cettolo V, Bellio R (2014) Confidence intervals for the parameters estimated from simulated O2 uptake kinetics: effects of different data treatments: confidence intervals of estimated parameters of O2 uptake kinetics. Exp Physiol 99:187–195. https://doi.org/10.1113/expphysiol.2013.076208

    CAS  Article  PubMed  Google Scholar 

  132. 132.

    De Tymowski C, Soussi S, Depret F, Legrand M (2017) On-line plasma lactate concentration monitoring in critically ill patients. Crit Care. https://doi.org/10.1186/s13054-017-1738-6

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Beneke R, Jumah MD, Leithäuser RM (2007) Modelling the lactate response to short-term all out exercise. Dyn Med 6:10. https://doi.org/10.1186/1476-5918-6-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Gerbino A, Ward SA, Whipp BJ (1996) Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol Bethesda Md 1985 80:99–107

    CAS  Google Scholar 

  135. 135.

    Luger GF (2005) Artificial intelligence: structures and strategies for complex problem solving. Pearson Education, London

    Google Scholar 

  136. 136.

    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    CAS  Article  PubMed  Google Scholar 

  137. 137.

    Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118

    Article  CAS  PubMed  Google Scholar 

  138. 138.

    Jones N (2014) The learning machines. Nature 505:146

    Article  CAS  PubMed  Google Scholar 

  139. 139.

    Montoye AHK, Pivarnik JM, Mudd LM et al (2016) Comparison of activity type classification accuracy from accelerometers worn on the hip, wrists, and thigh in young, apparently healthy adults. Meas Phys Educ Exerc Sci 20:173–183. https://doi.org/10.1080/1091367X.2016.1192038

    Article  Google Scholar 

  140. 140.

    Jobson SA, Passfield L, Atkinson G et al (2009) The analysis and utilization of cycling training data. Sports Med 39:833–844. https://doi.org/10.2165/11317840-000000000-00000

    Article  PubMed  Google Scholar 

  141. 141.

    Silva AJ, Costa AM, Oliveira PM et al (2007) The use of neural network technology to model swimming performance. J Sports Sci Med 6:117–125

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Ofoghi B, Zeleznikow J, MacMahon C, Raab M (2013) Data mining in elite sports: a review and a framework. Meas Phys Educ Exerc Sci 17:171–186. https://doi.org/10.1080/1091367X.2013.805137

    Article  Google Scholar 

  143. 143.

    Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, New York

    Google Scholar 

  144. 144.

    Kiefer J, Wolfowitz J (1952) Stochastic estimation of the maximum of a regression function. Ann Math Stat 23:462–466

    Article  Google Scholar 

  145. 145.

    Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366. https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  146. 146.

    Thrun S, Pratt L (2012) Learning to learn. Springer, Berlin

    Google Scholar 

  147. 147.

    Beltrame T, Amelard R, Villar R et al (2016) Estimating oxygen uptake and energy expenditure during treadmill walking by neural network analysis of easy-to-obtain inputs. J Appl Physiol 121:1226–1233. https://doi.org/10.1152/japplphysiol.00600.2016

    Article  PubMed  Google Scholar 

  148. 148.

    Beltrame T, Amelard R, Wong A, Hughson RL (2017) Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living. Sci Rep 7:45738. https://doi.org/10.1038/srep45738

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Borror A, Mazzoleni M, Coppock J et al (2019) Predicting oxygen uptake responses during cycling at varied intensities using an artificial neural network. Biomed Hum Kinet 11:60–68. https://doi.org/10.2478/bhk-2019-0008

    Article  Google Scholar 

  150. 150.

    LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. Handb Brain Theory Neural Netw 3361:1995

    Google Scholar 

  151. 151.

    Rajpurkar P, Hannun AY, Haghpanahi M, et al (2017) Cardiologist-level arrhythmia detection with convolutional neural networks. ArXiv Prepr ArXiv170701836

  152. 152.

    Gajda R, Biernacka EK, Drygas W (2018) Are heart rate monitors valuable tools for diagnosing arrhythmias in endurance athletes? Scand J Med Sci Sports 28:496–516. https://doi.org/10.1111/sms.12917

    CAS  Article  PubMed  Google Scholar 

  153. 153.

    Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit Lett 42:11–24. https://doi.org/10.1016/j.patrec.2014.01.008

    Article  Google Scholar 

  154. 154.

    Lipton ZC, Kale DC, Elkan C, Wetzell R (2015) Learning to diagnose with LSTM recurrent neural networks. ArXiv Prepr ArXiv151103677

  155. 155.

    Etxegarai U, Portillo E, Irazusta J et al (2017) Estimation of lactate threshold with machine learning techniques in recreational runners. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2017.11.036

    Article  Google Scholar 

  156. 156.

    Zignoli A, Fornasiero A, Stella F et al (2019) Expert-level classification of ventilatory thresholds from cardiopulmonary exercising test data with recurrent neural networks. Eur J Sport Sci. https://doi.org/10.1080/17461391.2019.1587523

    Article  PubMed  Google Scholar 

  157. 157.

    Holm EA (2019) In defense of the black box. Science 364:26–27. https://doi.org/10.1126/science.aax0162

    CAS  Article  PubMed  Google Scholar 

  158. 158.

    Darwish A, Hassanien AE (2011) Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11:5561–5595

    Article  PubMed  Google Scholar 

  159. 159.

    Di Dino A, Biral F, Bosetti P (2011) Hybrid modeling of non-linear mechanical systems: the case of a vehicle shock absorber. In: Volume 4: 8th international conference on multibody systems, nonlinear dynamics, and control, parts A and B. ASME, Washington, DC, USA, pp 1121–1130

  160. 160.

    Psichogios DC, Ungar LH (1992) A hybrid neural network-first principles approach to process modeling. AIChE J 38:1499–1511. https://doi.org/10.1002/aic.690381003

    CAS  Article  Google Scholar 

  161. 161.

    Møller M, Wedderkopp N, Myklebust G et al (2018) Validity of the SMS, Phone, and medical staff Examination sports injury surveillance system for time-loss and medical attention injuries in sports. Scand J Med Sci Sports 28:252–259. https://doi.org/10.1111/sms.12869

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Fondazione Cassa di Risparmio di Trento e Rovereto (CARITRO) for partially supporting this research. We thank the reviewers for spending a substantial amount of time looking over the manuscript.

Funding

Financial support has been received from the Fondazione CARITRO (Grant No. 2017.0379).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Zignoli.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zignoli, A., Fornasiero, A., Bertolazzi, E. et al. State-of-the art concepts and future directions in modelling oxygen consumption and lactate concentration in cycling exercise. Sport Sci Health 15, 295–310 (2019). https://doi.org/10.1007/s11332-019-00557-x

Download citation

Keywords

  • Narrative review
  • Mathematical models
  • Bioenergetics