Skip to main content

Advertisement

Log in

Effect of BCAA supplementation on central fatigue, energy metabolism substrate and muscle damage to the exercise: a systematic review with meta-analysis

  • Review Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Background and aims: Current state of evidence recommends beneficial effects of branched chain amino acids (BCAAs) on exercise performance; however, randomized controlled trials (RCTs) of BCAA supplementation yield discordant results. The objective of this study was to clarify the effects of BCAA supplementation in exercise through meta-analysis of all relevant RCTs.

Methods: A comprehensive search of PubMed, Embase, ISI web of science, and the Cochrane library has been conducted from inception to September 2016. This meta-analysis includes 31 primary trials of the effect of BCAA supplementation on central fatigue, fatigue substances (lactate and ammonia), energy metabolites (glucose and free fatty acids) and, muscle damage substances (LDH and CK). The estimates were either obtained from a fixed-effects model or a random-effects model. The studies’ heterogeneity was calculated by Cochrane’s test and I2 index.

Results: BCAA had no effect on central fatigue (SMD − 0.31, 95% CI − 0.72 to 0.09; p = 0.1; heterogeneity I2 = 0%, p = 0.9). However, a significant reduction was detected in the lactate levels (WMD − 0.16, 95% CI − 0.26 to − 0.53; p = 0.003; heterogeneity I2 = 47.9%, p = 0.023). Moreover, BCAA supplementation had beneficial effects on ammonia, glucose, FFA, and CK, but had no effects on LDH.

Conclusion: BCAA supplementation did not have any effect on the feeling of fatigue; however, it led to a favorable effect on fatigue substances, energy metabolites and muscle soreness substances. Therefore, it can be concluded that the ingestion of the BCAA can play a helpful role in the enhancement of the exercise performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Coombes JS, McNaughton LR (2000) Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J Sports Med Phys Fitness 40(3):240–246

    CAS  PubMed  Google Scholar 

  2. Kim D-H, Kim S-H, Jeong W-S, Lee H-Y (2013) Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances. J Exerc Nutr Biochem 17(4):169–180

    Article  Google Scholar 

  3. Blomstrand E (2006) A role for branched-chain amino acids in reducing central fatigue. J Nutr 136(2):544 s–7 s

    Article  CAS  Google Scholar 

  4. Davis JM. Carbohydrates (1995) Branched-chain amino acids, and endurances: the central fatigue hypothesis. Int J Sport Nutr 5(s1):S29–S38

    Article  PubMed  Google Scholar 

  5. Greer BK, White JP, Arguello EM, Haymes EM (2011) Branched-chain amino acid supplementation lowers perceived exertion but does not affect performance in untrained males. J Strength Cond Res 25(2):539–544

    Article  PubMed  Google Scholar 

  6. Portier H, Chatard JC, Filaire E, Jaunet-Devienne MF, Robert A, Guezennec CY (2008) Effects of branched-chain amino acids supplementation on physiological and psychological performance during an offshore sailing race. Eur J Appl Physiol 104(5):787–794

    Article  CAS  PubMed  Google Scholar 

  7. Shimomura Y, Kobayashi H, Mawatari K, Akita K, Inaguma A, Watanabe S et al (2009) Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women. J Nutr Sci Vitaminol 55(3):288–291

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto K, Takashige K, Hamada K, Tsujimoto H, Mitsuzono R (2009) Branched-chain amino acid supplementation increases the lactate threshold during an incremental exercise test in trained individuals. J Nutr Sci Vitaminol 55(1):52–58

    Article  CAS  PubMed  Google Scholar 

  9. MacLean D, Graham T, Saltin B (1994) Branched-chain amino acids augment ammonia metabolism while attenuating protein breakdown during exercise. Am J Physiol Endocrinol Metab 267(6):E1010–E1022

    Article  CAS  Google Scholar 

  10. MacLean DA, Graham TE, Saltin B (1996) Stimulation of muscle ammonia production during exercise following branched-chain amino acid supplementation in humans. J Physiol Lond 493(3):909–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maclean DA, Graham TE. (1993) Branched-chain amino-acid supplementation augments plasma, ammonia responses during exercise in humans J Appl Physiol 74(6):2711–2717

    Article  CAS  PubMed  Google Scholar 

  12. Koba T, Hamada K, Sakurai M, Matsumoto K, Hayase H, Imaizumi K et al (2007) Branched-chain amino acids supplementation attenuates the accumulation of blood lactate dehydrogenase during distance running. J Sports Med Phys Fitness 47(3):316

    CAS  PubMed  Google Scholar 

  13. Matsumoto K, Koba T, Hamada K, Sakurai M, Higuchi T, Miyata H (2009) Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. J Sports Med Phys Fit 49(4):424–431

    CAS  Google Scholar 

  14. Sheikholeslami-Vatani D, Ahmadi S (2016) Effect of oral branched-chain amino acid supplementation prior to resistance exercise on metabolic hormones, plasma amino acids, and serum indices of muscle damage in the recovery period. Top Clin Nutr 31(4):346–354

    Article  Google Scholar 

  15. Rahimi MH, Shab-Bidar S, Mollahosseini M, Djafarian K. (2017) Branched chain amino acid supplementation and exercise induced muscle damage in exercise recovery: a meta-analysis of randomized clinical trials. Nutrition 42:30–36

    Article  CAS  PubMed  Google Scholar 

  16. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    PubMed  PubMed Central  Google Scholar 

  17. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Controll Clin Trials 17(1):1–12

    Article  CAS  Google Scholar 

  18. Fedorov S. (2008) GetData graph digitizer. http://www.getdata-graph-digitizer.com

  19. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controll Clin Trials 7(3):177–188

    Article  CAS  Google Scholar 

  20. Higgins J, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  21. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Bmj 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blomstrand E, Hassmen P, Ek S, Ekblom B, Newsholme EA (1997) Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise. Acta Physiol Scand 159(1):41–49

    Article  CAS  PubMed  Google Scholar 

  23. Cheuvront SN, Carter R, Kolka MA, Lieberman HR, Kellogg MD, Sawka MN (2004) Branched-chain amino acid supplementation and human performance when hypohydrated in the heat. J Appl Physiol 97(4):1275–1282

    Article  CAS  PubMed  Google Scholar 

  24. Wisnik P, Chmura J, Ziemba AW, Mikulski T, Nazar K (2011) The effect of branched chain amino acids on psychomotor performance during treadmill exercise of changing intensity simulating a soccer game. Applied physiology, nutrition, and metabolism = Physiologie appliquee. Nutrition et metabolisme 36(6):856–862

    CAS  Google Scholar 

  25. Mittleman KD, Ricci MR, Bailey SP (1998) Branched-chain amino acids prolong exercise during heat stress in men and women. Med Sci Sports Exerc 30(1):83–91

    Article  CAS  PubMed  Google Scholar 

  26. Gualano AB, Bozza T, Lopes De Campos P, Roschel H, Dos Santos Costa A, Luiz Marquezi M et al (2011) Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. J Sports Med Phys Fit 51(1):82–88

    CAS  Google Scholar 

  27. Blomstrand E, Hassmen P, Ekblom B, Newsholme EA (1991) Administration of branched-chain amino acids during sustained exercise–effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol Occup Physiol 63(2):83–88

    Article  CAS  PubMed  Google Scholar 

  28. Struder HK, Hollmann W, Platen P, Donike M, Gotzmann A, Weber K. Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1998;30(4):188–94

    Article  CAS  PubMed  Google Scholar 

  29. Shimomura Y, Inaguma A, Watanabe S, Yamamoto Y, Muramatsu Y, Bajotto G et al. (2010) Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr Exerc Metab 20(3):236–44 (Internet)

    Article  CAS  PubMed  Google Scholar 

  30. Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN (2012) Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr 9(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blomstrand E, Saltin B (2001) BCAA intake affects protein metabolism in muscle after but not during exercise in humans. Am J Physiol Endocrinol Metab 281(2):E365–E374

    Article  CAS  PubMed  Google Scholar 

  32. Bigard AX, Lavier P, Ullmann L, Legrand H, Douce P, Guezennec CY (1996) Branched-chain amino acid supplementation during repeated prolonged skiing exercises at altitude. Int J Sport Nutr 6(3):295–306

    Article  CAS  PubMed  Google Scholar 

  33. Greer BK, Woodard JL, White JP, Arguello EM, Haymes EM (2007) Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. Int J Sport Nutr Exerc Metab 17(6):595–607

    Article  CAS  PubMed  Google Scholar 

  34. Watson P, Shirreffs SM, Maughan RJ (2004) The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. Eur J Appl Physiol 93(3):306–314

    Article  CAS  PubMed  Google Scholar 

  35. Tang F-C (2006) Influence of branched-chain amino acid supplementation on urinary protein metabolite concentrations after swimming. J Am Coll Nutr 25(3):188–194

    Article  CAS  PubMed  Google Scholar 

  36. Carli G, Bonifazi M, Lodi L, Lupo C, Martelli G, Viti A (1992) Changes in the exercise-induced hormone response to branched chain amino acid administration. Eur J Appl Physiol Occup Physiol 64(3):272–277

    Article  CAS  PubMed  Google Scholar 

  37. De Palo E, Gatti R, Cappellin E, Schiraldi C, De Palo C, Spinella P (2001) Plasma lactate, GH and GH-binding protein levels in exercise following BCAA supplementation in athletes. Amino acids 20(1):1–11

    Article  PubMed  Google Scholar 

  38. Apró W, Blomstrand E. (2010) Influence of supplementation with branched-chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle. Acta Physiol (Oxford, England) 200(3):237–48. (Internet)

    Article  Google Scholar 

  39. Fouré A, Nosaka K, Gastaldi M, Mattei J-P, Boudinet H, Guye M et al (2016) Effects of branched-chain amino acids supplementation on both plasma amino acids concentration and muscle energetics changes resulting from muscle damage: a randomized placebo controlled trial. Clin Nutr 35(1):83–94

    Article  PubMed  CAS  Google Scholar 

  40. De P, Metus P, Gatti R, Previti O, Bigon L, De P. (1993) Branched chain amino acids chronic treatment and muscular exercise performance in athletes: A study through plasma acetyl-carnitine levels. Amino Acids, 4(3):255–266

    Article  Google Scholar 

  41. Watanabe S, Inaguma A, Bajotto G, Sato J, Kobayashi H, Mawatari K et al (2007) Effects of branched-chain amino acid (BCAA) supplementation before and after exercise on delayed-onset muscle soreness (DOMS) and fatigue. Faseb J 21(5):A331

    Google Scholar 

  42. Schena F, Guerrini F, Tregnaghi P, Kayser B (1992) Branched-chain amino acid supplementation during trekking at high altitude. The effects on loss of body mass, body composition, and muscle power. Eur J Appl Physiol Occup Physiol 65(5):394–398

    Article  CAS  PubMed  Google Scholar 

  43. Knechtle B, Mrazek C, Wirth A, Knechtle P, Rust CA, Senn O et al (2012) Branched-chain amino acid supplementation during a 100-km ultra-marathon—a randomized controlled trial. J Nutr Sci Vitaminol 58(1):36–44

    Article  CAS  PubMed  Google Scholar 

  44. Kephart WC, Wachs TD, Mac Thompson R, Mobley CB, Fox CD, McDonald JR et al (2016) Ten weeks of branched-chain amino acid supplementation improves select performance and immunological variables in trained cyclists. Amino Acids 48(3):779–789

    Article  CAS  PubMed  Google Scholar 

  45. Gee TI, Deniel S (2016) Branched-chain aminoacid supplementation attenuates a decrease in power-producing ability following acute strength training. J Sports Med Phys Fit 56(12):1511–1517

    CAS  Google Scholar 

  46. Ganzit GP, Benzio S, Filippa M, Goitra B, Severin B, Gribaudo CG (1997) Effects of oral branched-chain amino acids supplementation in bodybuilders. Med Dello Sport 50(3):293–303 (Internet)

    Google Scholar 

  47. Areces F, Salinero JJ, Abian-Vicen J, Gonzalez-Millan C, Gallo-Salazar C, Ruiz-Vicente D et al (2014) A 7-day oral supplementation with branched-chain amino acids was ineffective to prevent muscle damage during a marathon. Amino Acids 46(5):1169–1176

    Article  CAS  PubMed  Google Scholar 

  48. Hassmén P, Blomstrand E, Ekblom B, Newsholme EA (1994) Branched-chain amino acid supplementation during 30-km competitive run: mood and cognitive performance. Nutrition (Burbank, Los Angeles County. Calif) 10(5):405–410

    Google Scholar 

  49. Dudgeon WD, Kelley EP, Scheett TP (2016) In a single-blind, matched group design: branched-chain amino acid supplementation and resistance training maintains lean body mass during a caloric restricted diet. J Int Soc Sports Nutr 13:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Blomstrand E, Ek S, Newsholme EA (1996) Influence of ingesting a solution of branched-chain amino acids on plasma and muscle concentrations of amino acids during prolonged submaximal exercise. Nutrition 12(7–8):485–490

    Article  CAS  PubMed  Google Scholar 

  51. Blomstrand E, Andersson S, Hassmen Pa, Ekblom B, Newsholme E (1995) Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects. Acta Physiol 153(2):87–96

    Article  CAS  Google Scholar 

  52. Varnier M, Sarto P, Martines D, Lora L, Carmignoto F, Leese G et al (1994) Effect of infusing branched-chain amino acid during incremental exercise with reduced muscle glycogen content. Eur J Appl Physiol Occup Physiol 69(1):[26–31 (Internet)

    Article  CAS  PubMed  Google Scholar 

  53. Pitkanen HT, Oja SS, Rusko H, Nummela A, Komi PV, Saransaari P et al (2003) Leucine supplementation does not enhance acute strength or running performance but affects serum amino acid concentration. Amino Acids 25(1):85–94

    Article  CAS  PubMed  Google Scholar 

  54. Pasiakos SM, McClung HL, McClung JP, Margolis LM, Andersen NE, Cloutier GJ et al (2011) Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis. Am J Clin Nutr 94(3):809–818

    Article  CAS  PubMed  Google Scholar 

  55. Nelson AR, Phillips SM, Stellingwerff T, Rezzi S, Bruce SJ, Breton I et al (2012) A Protein-Leucine Supplement Increases Branched-Chain Amino Acid and Nitrogen Turnover But Not Performance. Med Sci Sports Exerc 44(1):57–68

    Article  CAS  PubMed  Google Scholar 

  56. Crowe M, Weatherson J, Bowden B. (2006) Effects of dietary leucine supplementation on exercise performance. Eur J Appl Physiol 97(6):664–672. http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/412/CN-00561412/frame.html (Internet)

  57. van Hall G, Raaymakers JS, Saris WH, Wagenmakers AJ (1995) Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance. J Physiol 486(Pt 3):789–794

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mikulski T, Dabrowski J, Hilgier W, Ziemba A, Krzeminski K (2015) Effects of supplementation with branched chain amino acids and ornithine aspartate on plasma ammonia and central fatigue during exercise in healthy men. Folia Neuropathol 53(4):377–386

    Article  PubMed  Google Scholar 

  59. Chen IF, Wu HJ, Chen CY, Chou KM, Chang CK (2016) Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: a randomized controlled trial. J Int Soc Sports Nutr 13:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chang CK, Chang Chien KM, Chang JH, Huang MH, Liang YC, Liu TH (2015) Branched-chain amino acids and arginine improve performance in two consecutive days of simulated handball games in male and female athletes: a randomized trial. PLoS One 10(3):e0121866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lagarde D, Batejat D (1995) Disrupted sleep-wake rhythm and performance: Advantages of modafinil. Military Psychol 7(3):165

    Article  Google Scholar 

  62. Borg G. (1990) Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health. 16:55–8

    Article  PubMed  Google Scholar 

  63. Wagenmakers A, Coakley J, Edwards R (1990) Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle’s disease. Int J Sports Med 11(S 2):S101–S113

    Article  PubMed  Google Scholar 

  64. Suarez I, Bodega G, Fernandez B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Inter 41(2–3):123–142

    Article  CAS  Google Scholar 

  65. Dasarathy S, Mookerjee RP, Rackayova V, Thrane VR, Vairappan B, Ott P et al (2017) Ammonia toxicity: from head to toe? Metab Brain Dis 32(2):529–538

    Article  CAS  PubMed  Google Scholar 

  66. Assenza A, Bergero D, Tarantola M, Piccione G, Caola G (2004) Blood serum branched chain amino acids and tryptophan modifications in horses competing in long-distance rides of different length. J Anim Physiol Anim Nutr 88(3-4):172–177

    Article  CAS  Google Scholar 

  67. Stupka N, Lowther S, Chorneyko K, Bourgeois J, Hogben C, Tarnopolsky M (2000) Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol 89(6):2325–2332

    Article  CAS  PubMed  Google Scholar 

  68. Maughan RJ, Gleeson M (2010) The biochemical basis of sports performance. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to all the researchers whom we cited in this review for their significant and valuable research.

Funding

This work was financially supported by a grant (97s32) from Vice-Chancellor for Research Affairs of Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anahita Mansoori.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hormoznejad, R., Zare Javid, A. & Mansoori, A. Effect of BCAA supplementation on central fatigue, energy metabolism substrate and muscle damage to the exercise: a systematic review with meta-analysis. Sport Sci Health 15, 265–279 (2019). https://doi.org/10.1007/s11332-019-00542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-019-00542-4

Keywords

Navigation