Skip to main content
Log in

Biochemical changes in oxidative stress markers following endurance training and consumption of purslane seed in rats with hydrogen peroxide-induced toxicity

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The current study examined fluctuations in oxidative stress markers following endurance training (ET) and consumption of purslane seeds (Ps) in rats after receiving H2O2. Fifty-four adult male Wistar rats were assigned to nine experimental groups: (1) control (intoxicated-no treatment); (2) ET; (3) ET + Ps 50 mg/kg/day; (4) ET + Ps 200 mg/kg/day; (5) ET + Ps 400 mg/kg/day; (6) Ps 50 mg/kg/day; (7) Ps 200 mg/kg/day; (8) Ps 400 mg/kg/day; (9) control (non-intoxicated, intact). The first eight groups were given 100 mg/kg of H2O2 to induce oxidative stress. Groups 2–5 were given ET for a period of 8 weeks. Heart and lung tissues were then exposed to evaluate the oxidative stress markers. Catalase, glutathione peroxidase, malondialdehyde, and superoxide dismutase enzymes were measured using ELISA kits. A marked improvement in enzyme concentration was observed in both tissues. It was more pronounced in the groups receiving higher doses of Ps + ET. The findings provide evidence that purslane seed supplementation has antioxidant potential alongside endurance training and improved the ability to cope with oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016:3164734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Borchi E, Bargelli V, Stillitano F, Giordano C, Sebastiani M, Nassi PA, d’Amati G, Cerbai E, Nediani C (2010) Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. Biochim Biophys Acta 1802:331–338

    Article  CAS  PubMed  Google Scholar 

  3. Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48:629–641

    Article  CAS  PubMed  Google Scholar 

  4. Cachofeiro V, Goicochea M, De Vinuesa SG, Oubiña P, Lahera V, Luño J (2008) Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease: new strategies to prevent cardiovascular risk in chronic kidney disease. Kidney Int 74:S4–S9

    Article  CAS  Google Scholar 

  5. Dieterich S, Bieligk U, Beulich K, Hasenfuss G, Prestle J (2000) Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation 101:33–39

    Article  CAS  PubMed  Google Scholar 

  6. Kao MP, Ang DS, Pall A, Struthers AD (2010) Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options. J Hum Hypertens 24:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Gomez-Cabrera MC, Domenech E, Vina J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44:126–131

    Article  CAS  Google Scholar 

  8. Powers SK, Nelson WB, Hudson MB (2011) Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 51:942–950

    Article  CAS  PubMed  Google Scholar 

  9. Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7:34–42

    Article  CAS  PubMed  Google Scholar 

  10. Rahimi R (2017) Effect of resistance exercise on oxidative DNA damage and lipid peroxidation in trained and untrained men. Sport Sci Health 13:225–232

    Article  Google Scholar 

  11. Georgakouli K, Manthou E, Fatouros IG, Georgoulias P, Deli CK, Koutedakis Y, Theodorakis Y, Jamurtas AZ (2017) Enhanced erythrocyte antioxidant status following an 8-week aerobic exercise training program in heavy drinkers. Alcohol, Fayetteville

    Google Scholar 

  12. Holbrook NJ, Ikeyama S (2002) Age-related decline in cellular response to oxidative stress: links to growth factor signaling pathways with common defects. Biochem Pharmacol 64:999–1005

    Article  CAS  PubMed  Google Scholar 

  13. Sacheck JM, Milbury PE, Cannon JG, Roubenoff R, Blumberg JB (2003) Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic Biol Med 34:1575–1588

    Article  CAS  PubMed  Google Scholar 

  14. Hollander J, Fiebig R, Gore M, Ookawara T, Ohno H, Ji L (2001) Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflügers Archiv 442:426–434

    Article  CAS  PubMed  Google Scholar 

  15. Arikawa AY, Thomas W, Gross M, Smith A, Phipps WR, Kurzer MS, Schmitz KH (2013) Aerobic training reduces systemic oxidative stress in young women with elevated levels of F2-isoprostanes. Contemp Clin Trials 34:212–217

    Article  CAS  PubMed  Google Scholar 

  16. Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, Haga S, Ji LL, Ohno H (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol 84:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Jackson MJ, McArdle A (2011) Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species. J Physiol 589:2139–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bouzid MA, Filaire E, McCall A, Fabre C (2015) Radical oxygen species, exercise and aging: an update. Sports Med 45:1245–1261

    Article  PubMed  Google Scholar 

  19. Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, Salim LZA, Azarbayjani MA (2016) Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in-vitro and in-vivo. Sci Rep 6:25139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dehghan F, Soori R, Gholami K, Abolmaesoomi M, Yusof A, Muniandy S, Heidarzadeh S, Farzanegi P (2016) Purslane (Portulaca oleracea) seed consumption and aerobic training improves biomarkers associated with atherosclerosis in women with Type 2 diabetes (T2D). Sci Rep 6:37819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lipinski B (2011) Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev 809696:9

    Google Scholar 

  22. Arshadi S, Azarbayjani MA, Hajaghaalipor F, Yusof A, Peeri M, Bakhtiyari S, Stannard RS, Osman NA, Dehghan F (2015) Evaluation of Trigonella foenum-graecum extract in combination with swimming exercise compared to glibenclamide consumption on type 2 diabetic rodents. Food Nutr Res 59:29717

    Article  PubMed  Google Scholar 

  23. Liu L, Howe P, Zhou YF, Xu ZQ, Hocart C, Zhan R (2000) Fatty acids and beta-carotene in australian purslane (Portulaca oleracea) varieties. J Chromatogr A 893:207–213

    Article  CAS  PubMed  Google Scholar 

  24. Uddin MK, Juraimi AS, Hossain MS, Nahar MA, Ali ME, Rahman MM (2014) Purslane weed (Portulaca oleracea): a prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. Sci World J 2014:951019

    Article  CAS  Google Scholar 

  25. Jouybari MF, Farzanegi P, Barari AR (2014) The effect of 8-week aerobic exercise with purslane supplementation consumption on peroxidant and antioxidants indicators in women with type 2 diabetes. J Shahid Sadoughi Univ Med Sci 22:928–939

    Google Scholar 

  26. Salehi A, Farzanegi P (2015) Effect of 8 weeks of resistance training with and without Portulacalo seeds on some of liver injury markers in women with diabetes type 2. Urmia Med J 25:968–978

    Google Scholar 

  27. Esmaillzadeh A, Zakizadeh E, Faghihimani E, Gohari M, Jazayeri S (2015) The effect of purslane seeds on glycemic status and lipid profiles of persons with type 2 diabetes: A randomized controlled cross-over clinical trial. J Res Med Sci 20:47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahmed OM, Hozayen WG, Sree HTA (2015) Effects of ethanolic purslane shoot and seed extracts on doxorubicin-induced hepatotoxicity in albino rats, vol 2. World Academy of Science, Engineering, Istanbul

    Google Scholar 

  29. El-Azime ASA, Hussein EM, Ashry OM (2014) Synergestic effect of aqueous purslane (Portulaca oleracea L.) extract and fish oil on radiation-induced damage in rats. Int J Radiat Biol 90:1184–1190

    Google Scholar 

  30. Garcia J, Martinez-Ballarin E, Robinson M, Allue J, Reiter R, Osuna C, Acuna-Castroviejo D (2000) Protective effect of beta-carbolines and other antioxidants on lipid peroxidation due to hydrogen peroxide in rat brain homogenates. Neurosci Lett 294:1–4

    Article  CAS  PubMed  Google Scholar 

  31. Mallikarjuna K, Shanmugam KR, Nishanth K, Wu MC, Hou CW, Kuo CH, Reddy KS (2010) Alcohol-induced deterioration in primary antioxidant and glutathione family enzymes reversed by exercise training in the liver of old rats. Alcohol (Fayetteville NY) 44:523–529

    Article  CAS  Google Scholar 

  32. Samjoo I, Safdar A, Hamadeh M, Raha S, Tarnopolsky M (2013) The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr Diabetes 3:e88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steinbacher P, Eckl P (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5:356–377

    Article  CAS  Google Scholar 

  34. Goldfarb AH (1999) Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol 24:249–266

    Article  CAS  PubMed  Google Scholar 

  35. Pal S, Chaki B, Chattopadhyay S, Bandyopadhyay A (2017) High intensity exercise induced oxidative stress and skeletal muscle damage in post-pubertal boys and girls: a comparative study. J Strength Cond Res 32:1045–1052

    Google Scholar 

  36. Bogdanis GC (2012) Effects of physical activity and inactivity on muscle fatigue. Front Physiol 3:142

    Article  PubMed  PubMed Central  Google Scholar 

  37. Radak Z, Sasvari M, Nyakas C, Kaneko T, Tahara S, Ohno H, Goto S (2001) Single bout of exercise eliminates the immobilization-induced oxidative stress in rat brain. Neurochem Int 39:33–38

    Article  CAS  PubMed  Google Scholar 

  38. Gul M, Demircan B, Taysi S, Oztasan N, Gumustekin K, Siktar E, Polat MF, Akar S, Akcay F, Dane S (2006) Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comp Biochem Physiol Part A Mol Integr Physiol 143:239–245

    Article  CAS  Google Scholar 

  39. Kanter MM, Hamlin RL, Unverferth DV, Davis HW, Merola AJ (1985) Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin. J Appl Physiol (Bethesda, Md: 1985) 59:1298–1303

    Article  Google Scholar 

  40. Venditti P, Di Meo S (1996) Antioxidants, tissue damage, and endurance in trained and untrained young male rats. Arch Biochem Biophys 331:63–68

    Article  CAS  PubMed  Google Scholar 

  41. Gül M, Atalay M, Hänninen O (2003) Endurance training and glutathione-dependent antioxidant defense mechanism in heart of the diabetic rats. J Sports Sci Med 2:52

    PubMed  PubMed Central  Google Scholar 

  42. Somani S, Frank S, Rybak L (1995) Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions. Pharmacol Biochem Behav 51:627–634

    Article  CAS  PubMed  Google Scholar 

  43. Terblanche S (1999) The effects of exhaustive exercise on the activity levels of catalase in various tissues of male and female rats. Cell Biol Int 23:749–753

    Article  CAS  Google Scholar 

  44. Bouzid MA, Hammouda O, Matran R, Robin S, Fabre C (2015) Influence of physical fitness on antioxidant activity and malondialdehyde level in healthy older adults. Appl Physiol Nutr Metab 40:582–589

    Article  CAS  PubMed  Google Scholar 

  45. Lu J, Borthwick F, Hassanali Z, Wang Y, Mangat R, Ruth M, Shi D, Jaeschke A, Russell JC, Field CJ, Proctor SD, Vine DF (2011) Chronic dietary n-3 PUFA intervention improves dyslipidaemia and subsequent cardiovascular complications in the JCR:LA-cp rat model of the metabolic syndrome. Br J Nutr 105:1572–1582

    Article  CAS  PubMed  Google Scholar 

  46. Nestel PJ (2000) Fish oil and cardiovascular disease: lipids and arterial function. Am J Clin Nutr 71:228S–231S

    Article  CAS  PubMed  Google Scholar 

  47. Oh JY (2010) Serum cystatin C as a biomarker for predicting coronary artery disease in diabetes. Korean Diabetes J 34:84–85

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jimoh F, Oladiji A (2005) Preliminary studies on Piliostigma thonningii seeds: proximate analysis, mineral composition and phytochemical screening. Afr J Biotechnol 4(12):1439–1442

    CAS  Google Scholar 

  49. Prakash D, Pal M (1991) Nutritional and antinutritional composition of vegetable and grain amaranth leaves. J Sci Food Agric 57:573–583

    Article  CAS  Google Scholar 

  50. Miller T, Wing J, Huete A (1984) The agricultural potential of selected C4 plants in arid environments. J Arid Environ 7(3):275–286

    Google Scholar 

  51. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahman Soori.

Ethics declarations

Conflict of interest

None of the authors have financial or other conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soori, R., Shahedi, V., Akbarnejad, A. et al. Biochemical changes in oxidative stress markers following endurance training and consumption of purslane seed in rats with hydrogen peroxide-induced toxicity. Sport Sci Health 15, 133–139 (2019). https://doi.org/10.1007/s11332-018-0501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-018-0501-y

Keywords

Navigation