Relationship of chlorophyll supplement and platelet-related measures in endurance athletes: a randomized, double-blind, placebo-controlled study

Abstract

Background

The aim of this study was to verify the effects of protracted intake of chlorophyll on blood counts’ parameters and iron levels in endurance athletes, investigating supposed anti-anemic properties.

Methods

Twenty-two endurance athletes were randomly assigned into two groups in a double-blind study: the experimental group (EG) consumed chlorophyll, while the control group (CG) consumed a placebo, at a dose of 1.6 drops × kg per day for 120 days. Blood cell count and the serum iron analyses were carried out before starting the experiment, after 30 days and after 120 days.

Results

EG showed statistically significant increase in platelet distribution width (PDW, MD = 0.83, 95% CI 0.41, 1.38), mean platelet volume (MPV, MD = 0.41, 95% CI 0.19, 0.67) and platelet/large cell ratio (P-LCR, MD = 3.28, 95% CI 1.51, 5.25) after 120 days. No variations in CG were found during the follow-up.

Conclusions

The increase of platelet-related measures could positively influence the endurance performance by reducing pain and fatigue. The supposed ergogenic effects and anti-anemic properties however require further study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Hendry GA, Jones OT (1980) Haems and chlorophylls: comparison of function and formation. J Med Genet 17(1):1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. 2.

    Ferruzzi MG, Blakeslee J (2007) Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 27(1):1–12

    Article  CAS  Google Scholar 

  3. 3.

    Nagini S, Palitti F, Natarajan AT (2015) Chemopreventive potential of chlorophyllin: a review of the mechanisms of action and molecular targets. Nutr Cancer 67(2):203–211

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Jubert C, Mata J, Bench G, Dashwood R, Pereira C, Tracewell W, Turteltaub K, Williams D, Bailey G (2009) Effects of chlorophyll and chlorophyllin on low-dose aflatoxin B1 pharmacokinetics in human volunteers. Cancer Prev Res 2(12):1015–1022

    Article  CAS  Google Scholar 

  5. 5.

    Tachino N, Guo D, Dashwood WM, Yamane S, Larsen R, Dashwood R (1994) Mechanisms of the in vitro antimutagenic action of chlorophyllin against benzo [a] pyrene: studies of enzyme inhibition, molecular complex formation and degradation of the ultimate carcinogen. Mutat Res Fundam Mol M 308(2):191–203

    Article  CAS  Google Scholar 

  6. 6.

    Shaughnessy DT, Gangarosa LM, Schliebe B, Umbach DM, Xu Z, MacIntosh B, Knize MG, Matthews PP, Swank AE, Sandler RS, DeMarini DM, Taylor JA (2011) Inhibition of fried meat-induced colorectal DNA damage and altered systemic genotoxicity in humans by crucifera, chlorophyllin, and yogurt. PLoS One 6(4):e18707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Inanç AL (2011) Chlorophyll: structural properties, health benefits and its occurrence in virgin olive oils. Akademik Gıda 9(2):26–32

    Google Scholar 

  8. 8.

    McCook JP, Stephens TJ, Jiang LI, Law RM, Gotz V (2016) Ability of sodium copper chlorophyllin complex to repair photoaged skin by stimulation of biomarkers in human extracellular matrix. Clin Cosmet Investig Dermatol 9:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Zhang Y, Guan L, Wang X, Wen T, Xing J, Zhao J (2008) Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2. Free Radic Res 42(4):362–371

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Hsu CY, Yang CM, Chen CM, Chao PY, Hu SP (2005) Effects of chlorophyll-related compounds on hydrogen peroxide induced DNA damage within human lymphocytes. J Agric Food Chem 53(7):2746–2750

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Zhang YL, Guan L, Zhou PH, Mao LJ, Zhao ZM, Li SQ, Xu XX, Cong CC, Zhu MX, Zhao JY (2012) The protective effect of chlorophyllin against oxidative damage and its mechanism. Zhonghua Nei Ke Za Zhi 51(6):466–470

    PubMed  CAS  Google Scholar 

  12. 12.

    Balder HF, Vogel J, Jansen MC, Weijenberg MP, van den Brandt PA, Westenbrink S, van der Meer R, Goldbohm RA (2006) Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiol Biomark Prev 15(4):717–725

    Article  CAS  Google Scholar 

  13. 13.

    Das J, Samadder A, Mondal J, Abraham SK, Khuda-Bukhsh AR (2016) Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction. Environ Toxicol Pharmacol 46:147–157

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Kitamura K, Nagao M, Hayatsu H, Morita M (2005) Effect of chlorophyllin-chitosan on excretion of dioxins in a healthy man. Environ Sci Technol 39(4):1084–1091

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Lopez-Carballo G, Hernandez-Munoz P, Gavara R, Ocio MJ (2008) Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products. Int J Food Microbiol 126(1):65–70

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Mysliwa-Kurdziel B, Solymosi K (2016) Chlorophylls and Their Derivatives Used in Food Industry and Medicine. Mini Rev Med Chem 17(13):1194–1222

    Google Scholar 

  17. 17.

    Buratti P, Gammella E, Rybinska I, Cairo G, Recalcati S (2016) Recent advances in iron metabolism: relevance for health, exercise, and performance. Med Sci Sports Exerc 47(8):1596–1604

    Article  CAS  Google Scholar 

  18. 18.

    Kong W, Gao G, Chang Y (2014) Hepcidin and sports anemia. Cell Biosci 4:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Wood R, Foster L, Damant A, Key P (2004) Analytical methods for food additives. Elsevier, Amsterdam

    Book  Google Scholar 

  20. 20.

    Chow S-C, Shao J, Wang H (2008) Sample size calculations in clinical research, 2nd edn. Chapman & Hall/CRC, Boca Raton (section 3.1.1, p 50)

    Google Scholar 

  21. 21.

    Schmidt W, Prommer N (2010) Impact of alterations in total hemoglobin mass on VO2max. Exerc Sport Sci Rev 38(2):68–75

    Article  PubMed  Google Scholar 

  22. 22.

    Novack V, Finestone AS, Constantini N, Shpilberg O, Weitzman S, Merkel D (2007) The prevalence of low hemoglobin values among new infantry recruits and nonlinear relationship between hemoglobin concentration and physical fitness. Am J Hematol 82(2):128–133

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Duca L, Da Ponte A, Cozzi M, Carbone A, Pomati M, Nava I, Cappellini MD, Fiorelli G (2006) Changes in erythropoiesis, iron metabolism and oxidative stress after half-marathon. Intern Emerg Med 1(1):30–34

    Article  PubMed  Google Scholar 

  24. 24.

    LaManca JJ, Haymes EM (1993) Effects of iron repletion on VO2max, endurance, and blood lactate in women. Med Sci Sports Exerc 25(12):1386–1392

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Phys 79(3):675–686

    CAS  Google Scholar 

  26. 26.

    Cugat R, Cuscó X, Seijas R, Álvarez P, Steinbacher G, Ares O, Wang-Saegusa A, García-Balletbó M (2015) Biologic enhancement of cartilage repair: the role of platelet-rich plasma and other commercially available growth factors. Arthroscopy 31(4):777–783

    Article  PubMed  Google Scholar 

  27. 27.

    Cunha RC, Francisco JC, Cardoso MA, Matos LF, Lino D, Simeoni RB, Pereira G, Irioda AC, Simeoni PR, Guarita-Souza LC, Carvalho KA (2014) Effect of platelet-rich plasma therapy associated with exercise training in musculoskeletal healing in rats. In Transplant Proc 46(6):1879–1881

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Hamid A, Mohamed Ali MS, Yusof MR, George A, Lee J (2014) LP. Platelet-rich plasma injections for the treatment of hamstring injuries a randomized controlled trial. Am J Sports Med 42(10):2410–2418

    Article  Google Scholar 

  29. 29.

    Raeissadat SA, Rayegani SM, Hassanabadi H, Fathi M, Ghorbani E, Babaee M, Azma K (2015) Knee osteoarthritis injection choices: platelet-rich plasma (PRP) versus hyaluronic acid (a one-year randomized clinical trial). Clin Med Insights Arthritis Musculoskelet Disord 8:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lippi G, Salvagno GL, Danese E, Skafidas S, Tarperi C, Guidi GC, Schena F (2014) Mean platelet volume (MPV) predicts middle distance running performance. PLoS One 9(11):1–6

    Article  CAS  Google Scholar 

  31. 31.

    Alis R, Sanchis-Gomar F, Risso-Ballester J, Blesa JR, Romagnoli M (2015) Effect of training status on the changes in platelet parameters induced by short-duration exhaustive exercise. Platelets 29:1–6

    Article  CAS  Google Scholar 

  32. 32.

    Kratz A, Wood MJ, Siegel AJ, Hiers JR, Van Cott EM (2006) Effects of marathon running on platelet activation markers direct evidence for in vivo platelet activation. Am J Clin Pathol 125(2):296–300

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Bakovic D, Pivac N, Zubin Maslov P, Breskovic T, Damonja G, Dujic Z (2013) Spleen volume changes during adrenergic stimulation with low doses of epinephrine. J Physiol Pharmacol 64(5):649–655

    PubMed  CAS  Google Scholar 

  34. 34.

    Lippi G, Salvagno GL, Danese E, Tarperi C, Guidi GC, Schena F (2014) Variation of red blood cell distribution width and mean platelet volume after moderate endurance exercise. Adv Hematol 192173:1–4

    Article  Google Scholar 

  35. 35.

    Sharma G, Berger JS (2011) Platelet activity and cardiovascular risk in apparently healthy individuals: a review of the data. J Thromb Thrombolysis 32(2):201–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Herboristic laboratory Di Leo srl for the supply of chlorophyll and for sustaining the direct costs needed to carry out this study.

Funding

The authors have no funding to declare.

Author information

Affiliations

Authors

Contributions

GC performed the data analysis, conceived the statistical analysis, interpreted the results and drafted the manuscript. MI contributed to the experimental design, undertook the data collection, interpreted the results and drafted the manuscript. FM undertook the data collection, interpreted the results and analyzed the literature. FB and VC provided critical comments and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Giovanni Cugliari.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

All authors declare no conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cugliari, G., Messina, F., Canavero, V. et al. Relationship of chlorophyll supplement and platelet-related measures in endurance athletes: a randomized, double-blind, placebo-controlled study. Sport Sci Health 14, 449–454 (2018). https://doi.org/10.1007/s11332-018-0477-7

Download citation

Keywords

  • Endurance
  • Chlorophyll supplement
  • Platelet distribution width
  • Mean platelet volume
  • Platelet/large cell ratio