High-intensity interval aerobic exercise induced a longer hypotensive effect when compared to continuous moderate

  • Áthila Teles Dantas Maya
  • Mayra Jane Assunção
  • Ciro José Brito
  • Elaine Vieira
  • Thiago Santos Rosa
  • Fernando Borges Pereira
  • Otavio de Toledo Nóbrega
  • Nanci Maria de França
  • Aparecido Pimentel Ferreira
Original Article



This study verified the blood pressure response between high-intensity interval aerobic exercise and continuous aerobic exercise of moderate intensity in normotensive participants.


For this, we evaluated 30 physically active (23.0 ± 6.5 years; 71.9 ± 7.2 kg: 1.74 ± 0.1 m; 23.9 ± 2.0% of body fat) normotensive men (systolic: 122 ± 9 and diastolic: 75 ± 9). After measuring maximum oxygen consumption and anaerobic threshold, the sample was randomized into three conditions: (1) high-intensity interval aerobic exercise (HIIAE); (2) continuous aerobic exercise of moderate intensity (CAEMI); and (3) Control. Heart rate, systolic and diastolic blood pressure were measured at rest and 15′, 30′, 45′ 1, 2, 3, and 4-h post-exercise.


There was a decrease in systolic blood pressure and diastolic blood pressure up to 3 h in the CAEMI session (systolic: 112 ± 9 and diastolic: 70 ± 9; p < 0.05) and up to 4 h post-exercise in the HIIAE session (systolic: 116 ± 9 and diastolic: 71 ± 9; p < 0.05) when compared to the control. There was no difference between CAEMI and HIIAE (p > 0.05).


CAEMI and HIIAE induced similar post-exercise hypotension; however, HIIAE provided longer post-exercise hypotension.


Post exercise hypotension Aerobic exercise Hypertension Heart rate 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional and the Helsinki Declaration.

Informed consent

All of the subjects sign the consent form.


  1. 1.
    Morrisroe K, Stevens W, Sahhar J, Rabusa C, Nikpour M, Proudman S (2017) Epidemiology and disease characteristics of systemic sclerosis-related pulmonary arterial hypertension: results from a real-life screening programme. Arthritis Res Ther 19(1):42CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Padur AA, Gunalan C, Kumar N (2017) Evaluation of cardiovascular disease in patients with systemic arterial hypertension in relation to age and sex: a retrospective study in a south Indian population. Braz Vasc J 16(1):11–15CrossRefGoogle Scholar
  3. 3.
    Picon RV, Dias-da-Costa JS, Fuchs FD, Olinto MTA, Choudhry NK, Fuchs SC (2017) Hypertension management in Brazil: usual practice in primary care—a meta-analysis. Int J Hypertens 2017(1274168):1–9CrossRefGoogle Scholar
  4. 4.
    MacDonald H, Johnson BT, Huedo-Medina TB, Livingston J, Forsyth KC, Kraemer WJ et al (2016) Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J Am Heart Assoc 5(10):e003231CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Goessler K, Polito M, Cornelissen VA (2016) Effect of exercise training on the renin-angiotensin-aldosterone system in healthy individuals: a systematic review and meta-analysis. Hypertens Res 39(3):119–126CrossRefPubMedGoogle Scholar
  6. 6.
    Carlson DJ, Inder J, Palanisamy SK, McFarlane JR, Dieberg G, Smart NA (2016) The efficacy of isometric resistance training utilizing handgrip exercise for blood pressure management: a randomized trial. Medicine 95(52):e5791CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Senna G, de Oliveira CQ, Kreuger S, Scudese E, Monteiro W (2016) Hypotensive effect of resistance training performed on stable vs. unstable surfaces. J Exerc Physiol Online 19(1):17–27Google Scholar
  8. 8.
    DeVallance E, Fournier S, Lemaster K, Moore C, Asano S, Bonner D et al (2016) The effects of resistance exercise training on arterial stiffness in metabolic syndrome. Eur J Appl Physiol 116(5):899–910CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kawano H, Nakagawa H, Onodera S, Higuchi M, Miyachi M (2008) Attenuated increases in blood pressure by dynamic resistance exercise in middle-aged men. Hypertens Res 31(5):1045–1053CrossRefPubMedGoogle Scholar
  10. 10.
    Polito MD, Farinatti PT, Lira VA, Nobrega AC (2007) Blood pressure assessment during resistance exercise: comparison between auscultation and Finapres. Blood Press Monit 12(2):81–86CrossRefPubMedGoogle Scholar
  11. 11.
    Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 2(1):e004473CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Halliwill JR (2001) Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev 29(2):65–70CrossRefPubMedGoogle Scholar
  13. 13.
    Bruneau ML, Johnson BT, Huedo-Medina TB, Larson KA, Ash GI, Pescatello LS (2016) The blood pressure response to acute and chronic aerobic exercise: a meta-analysis of candidate gene association studies. J Sci Med Sport 19(5):424–431CrossRefPubMedGoogle Scholar
  14. 14.
    Santos DA, Gobbo LA, Matias CN, Petroski EL, Gonçalves EM, Cyrino ES et al (2013) Body composition in taller individuals using DXA: a validation study for athletic and non-athletic populations. J Sports Sci 31(4):405–413CrossRefPubMedGoogle Scholar
  15. 15.
    Jackson A, Pollock M (1978) Generalized equations for predicting body density of men. Br J Nutr 40(3):497–504CrossRefPubMedGoogle Scholar
  16. 16.
    Siri WE (1993) Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition 9(5):480–491PubMedGoogle Scholar
  17. 17.
    Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA et al (2013) Exercise standards for testing and training. Circulation 128(8):873–934CrossRefPubMedGoogle Scholar
  18. 18.
    Ferreira AP, Ferreira CB, Brito CJ, Souza VC, Córdova C, Nóbrega OT et al (2013) The effect of aerobic exercise intensity on attenuation of postprandial lipemia is dependent on apolipoprotein E genotype. Atherosclerosis. 229(1):139–144CrossRefPubMedGoogle Scholar
  19. 19.
    Borg G (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381CrossRefPubMedGoogle Scholar
  20. 20.
    Angadi SS, Bhammar DM, Gaesser GA (2015) Postexercise hypotension after continuous, aerobic interval, and sprint interval exercise. J Strength Cond Res 29(10):2888–2893CrossRefPubMedGoogle Scholar
  21. 21.
    Cunha GAD, Rios ACS, Moreno JR, Braga PL, Campbell CSG, Simões HG et al (2006) Post-exercise hypotension in hypertensive individuals submitted to aerobic exercises of alternated intensities and constant intensity-exercise. Revista Brasileira de Medicina do Esporte 12(6):313–317CrossRefGoogle Scholar
  22. 22.
    Simões HG, Asano RY, Sales MM, Browne RA, Arsa G, Motta-Santos D et al (2013) Type 2 diabetes elicits lower nitric oxide, bradykinin concentration and kallikrein activity together with higher DesArg(9)-BK and reduced post-exercise hypotension compared to non-diabetic condition. PLoS One 8(11):e80348CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lacombe SP, Goodman JM, Spragg CM, Liu S, Thomas SG (2011) Interval and continuous exercise elicit equivalent postexercise hypotension in prehypertensive men, despite differences in regulation. Appl Physiol Nutr Metab 36(6):881–891CrossRefPubMedGoogle Scholar
  24. 24.
    Anunciação PG, Polito MD (2011) A review on post-exercise hypotension in hypertensive individuals. Arq Bras Cardiol 96(5):425–426CrossRefGoogle Scholar
  25. 25.
    Ciolac EG, Guimarães GV, D Avila VM, Bortolotto LA, Doria EL, Bocchi EA (2009) Acute effects of continuous and interval aerobic exercise on 24-h ambulatory blood pressure in long-term treated hypertensive patients. Int J Cardiol 133(3):381–387CrossRefPubMedGoogle Scholar
  26. 26.
    Moraes MR, Bacurau RF, Ramalho JD, Reis FC, Casarini DE, Chagas JR et al (2007) Increase in kinins on post-exercise hypotension in normotensive and hypertensive volunteers. Biol Chem 388(5):533–540CrossRefPubMedGoogle Scholar
  27. 27.
    Pontes FL, Bacurau RF, Moraes MR, Navarro F, Casarini DE, Pesquero JL et al (2008) Kallikrein kinin system activation in post-exercise hypotension in water running of hypertensive volunteers. Int Immunopharmacol 8(2):261–266CrossRefPubMedGoogle Scholar
  28. 28.
    Chen CY, Bonham AC (2010) Postexercise hypotension: central mechanisms. Exerc Sport Sci Rev 38(3):122–127CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    MacDonald JR (2002) Potential causes, mechanisms, and implications of post exercise hypotension. J Hum Hypertens 16(4):225–236CrossRefPubMedGoogle Scholar
  30. 30.
    Cote AT, Bredin SS, Phillips AA, Koehle MS, Warburton DE (2015) Greater autonomic modulation during post-exercise hypotension following high-intensity interval exercise in endurance-trained men and women. Eur J Appl Physiol 115(1):81–89CrossRefPubMedGoogle Scholar
  31. 31.
    James GD, Gerber LM (2018) Measuring arterial blood pressure in humans: auscultatory and automatic measurement techniques for human biological field studies. Am J Hum Biol 30(1):1–16CrossRefGoogle Scholar
  32. 32.
    Chen Z, Wang X, Wang Z, Zhang L, Hao G, Dong Y et al (2017) Assessing the validity of oscillometric device for blood pressure measurement in a large population-based epidemiologic study. J Am Soc Hypertens 11(11):730–6.e4Google Scholar
  33. 33.
    Cucato GG, Ritti-Dias RM, Wolosker N, Santarem JM, Jacob Filho W, Forjaz CL (2011) Post-resistance exercise hypotension in patients with intermittent claudication. Clinics (Sao Paulo) 66(2):221–226CrossRefGoogle Scholar
  34. 34.
    Ferreira AP, Nóbrega OET, França NM (2009) Association of body mass index and insulin resistance with metabolic syndrome in Brazilian children. Arq Bras Cardiol 93(2):147–153CrossRefPubMedGoogle Scholar
  35. 35.
    Ferreira AP, Campos BRM, Rodrigues Junior É, Puga GM, Brito CJ (2013) Effects of aerobic and resistance exercise intensities on 24-hours blood pressure in normotensive women. Motriz Revista de educação física 19(4):681–687CrossRefGoogle Scholar
  36. 36.
    Ferreira AP, Ferreira CB, Campos BRM, Samy GCP, Morais PPD (2011) Efeito de diferentes intensidades de exercício aeróbio na resposta pressórica de 24 horas em mulheres normotensas. J Health Sci Inst 29(1):62–66Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Research CenterFaculdades ICESPBrasíliaBrazil
  2. 2.Graduation Program in Physical Education and HealthUniversidade Católica de Brasília-UCB-DFBrasíliaBrazil
  3. 3.Physical Education DepartmentUniversidade Federal de Juiz de Fora, Governador ValaradesJuiz de ForaBrazil
  4. 4.Graduation Program in Health SciencesUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations