Skip to main content

Advertisement

Log in

Forecasting of rehabilitation treatment in sufferers from lateral displacement of patella using artificial intelligence

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Objectives

In this research, the application of artificial intelligence methods for data analysis named hybrid artificial neural network (ANN) with teaching learning based optimization (TLBO) algorithm to predict of the rehabilitation treatment for females with lateral displacement of the patella (LDP) is demonstrated.

Methods

The prediction abilities offered using ANN-TLBO model was presented using available data from 48 female patients referred to physical medicine and rehabilitation clinics of Isfahan Ayatollah Kashani medical center and Al Zahra hospital, Iran. In this modeling, clinical characteristics [weight, height, body mass index (BMI), the degree of LDP, affected side and severity of pain] and demographic characteristic (age) were utilized as the input parameters, while the rehabilitation treatment was the output parameter.

Results and discussion

The results indicate a high level of efficient of ANN-TLBO model used with an accuracy level of more than 86%. Therefore, this model can be used successfully for the prediction of rehabilitation treatment for females with LDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wilson T (2007) The measurement of patellar alignment in patellofemoral pain syndrome: are we confusing assumptions with evidence? J Orthop Sports Phys Ther 37(6):330

    Article  PubMed  Google Scholar 

  2. Herrington L (2008) The difference in a clinical measure of patella lateral position between individuals with patellofemoral pain and matched controls. J Orthop Sports Phys Ther 38(2):59–62

    Article  PubMed  Google Scholar 

  3. Smith TO, Davies L, Donell ST (2009) The reliability and validity of assessing medio-lateral patellar position: a systematic review. Man Ther 14(4):355–362

    Article  PubMed  Google Scholar 

  4. Herrington L (2002) The inter-tester reliability of a clinical measurement used to determine the medial/lateral orientation of the patella. Man Ther 7(3):163–167

    Article  CAS  PubMed  Google Scholar 

  5. Ota S, Ward SR, Chen Y-J, Tsai Y-J, Powers CM (2006) Concurrent criterion-related validity and reliability of a clinical device used to assess lateral patellar displacement. J Orthop Sports Phys Ther 36(9):645–652

    Article  PubMed  Google Scholar 

  6. Balci P, Tunay VB, Baltaci G, Atay AO (2008) The effects of two different closed kinetic chain exercises on muscle strength and proprioception in patients with patellofemoral pain syndrome. Acta Orthop Traumatol Turc 43(5):419–425

    Article  Google Scholar 

  7. Lai DT, Levinger P, Begg RK, Gilleard WL, Palaniswami M (2009) Automatic recognition of gait patterns exhibiting patellofemoral pain syndrome using a support vector machine approach. IEEE Trans Inf Technol B 13(5):810–817

    Article  Google Scholar 

  8. Lun VM, Wiley JP, Meeuwisse WH, Yanagawa TL (2005) Effectiveness of patellar bracing for treatment of patellofemoral pain syndrome. Clin J Sport Med 15(4):235–240

    Article  PubMed  Google Scholar 

  9. Shellock FG, Mullin M, Stone KR, Coleman M, Crues JV (2000) Kinematic magnetic resonance imaging of the effect of bracing on patellar position: qualitative assessment using an extremity magnetic resonance system. J Athl Train 35(1):44

    CAS  PubMed  PubMed Central  Google Scholar 

  10. White LC, Dolphin P, Dixon J (2009) Hamstring length in patellofemoral pain syndrome. Physiotherapy 95(1):24–28

    Article  PubMed  Google Scholar 

  11. Colvin AC, West RV (2008) Patellar instability. J Bone Jt Surg 90(12):2751–2762

    Article  Google Scholar 

  12. Powers CM (1998) Rehabilitation of patellofemoral joint disorders: a critical review. J Orthop Sports Phys Ther 28(5):345–354

    Article  CAS  PubMed  Google Scholar 

  13. Worrell T, Ingersoll CD, Bockrath-Pugliese K, Minis P (1998) Effect of patellar taping and bracing on patellar position as determined by MRI in patients with patellofemoral pain. J Athl Train 33(1):16

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Douciette SA, Goble EM (1992) The effect of exercise on patellar tracking in lateral patellar compression syndrome. Am J Sports Med 20(4):434–440

    Article  Google Scholar 

  15. Grelsamer RP (2000) Patellar malalignment. J Bone Jt Surg 82(11):1639

    Article  Google Scholar 

  16. Juhn MS (1999) Patellofemoral pain syndrome: a review and guidelines for treatment. Am Fam Phys 60(7):2012–2022

    CAS  Google Scholar 

  17. Al-Hakim W, Jaiswal PK, Khan W, Johnstone D (2012) Suppl 2: The non-operative treatment of anterior knee pain. Open Orthop J 6:320–326

    Article  PubMed  PubMed Central  Google Scholar 

  18. Syme G, Rowe P, Martin D, Daly G (2009) Disability in patients with chronic patellofemoral pain syndrome: a randomised controlled trial of VMO selective training versus general quadriceps strengthening. Man Ther 14(3):252–263

    Article  CAS  PubMed  Google Scholar 

  19. Palumbo P (1981) Dynamic patellar brace: a new orthosis in the management of patellofemoral disorders A preliminary report. Am J Sports Med 9(1):45–49

    Article  PubMed  Google Scholar 

  20. Shelton GL, Thigpen LK (1991) Rehabilitation of patellofemoral dysfunction: a review of literature. J Orthop Sports Phys Ther 14(6):243–249

    Article  CAS  PubMed  Google Scholar 

  21. Choi EH, Kim K, Jun A (2011) Effects of the off-loading brace on the activation of femoral muscles—a preliminary study. Ann Rehabil Med 36:887–896

    Article  Google Scholar 

  22. Powers CM, Ward SR, Chen Y-J, Terk MR (2004) Effect of bracing on patellofemoral joint stress while ascending and descending stairs. Clin J Sport Med 14(4):206–214

    Article  PubMed  Google Scholar 

  23. Powers CM, Ward SR, Chan LD, Chen YJ, Terk MR (2004) The effect of bracing on patella alignment and patellofemoral joint contact area. Med Sci Sport Exer 36(7):1226–1232

    Article  Google Scholar 

  24. Mohammadi Asl J, Kahrizi S, Ebrahimi E, Faghihzadeh S (2008) The effect of short-term usage of rigid neoprene knee sleeve and soft neoprene knee sleeve on knee joint position sense perception after reconstruction surgery of anterior cruciate ligament. World J Sport Sci 1(1):42–47

    Google Scholar 

  25. Martin TJ (2001) Technical report: knee brace use in the young athlete. Pediatrics 108(2):503–507

    Article  CAS  PubMed  Google Scholar 

  26. Hawamdeh ZM, Alshraideh MA, Al-Ajlouni JM, Salah IK, Holm MB, Otom AH (2012) Development of a decision support system to predict physicians’ rehabilitation protocols for patients with knee osteoarthritis. Int J Rehabil Res 35(3):214–219

    PubMed  Google Scholar 

  27. Pearce CB, Gunn SR, Ahmed A, Johnson CD (2006) Machine learning can improve prediction of severity in acute pancreatitis using admission values of APACHE II score and C-reactive protein. Pancreatology 6(1–2):123–131

    Article  CAS  PubMed  Google Scholar 

  28. Tam S-F, Cheing GL, Hui-Chan CW (2004) Predicting osteoarthritic knee rehabilitation outcome by using a prediction model developed by data mining techniques. Int J Rehabil Res 27(1):65–69

    Article  PubMed  Google Scholar 

  29. Lisboa PJ, Ifeachor EC (2000) Artificial neural networks in biomedicine. Springer, New York

    Book  Google Scholar 

  30. Green M, Björk J, Forberg J, Ekelund U, Edenbrandt L, Ohlsson M (2006) Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room. Artif Intell Med 38(3):305–318

    Article  PubMed  Google Scholar 

  31. Shanthi D, Sahoo G, Saravanan N (2009) Designing an artificial neural network model for the prediction of thrombo-embolic stroke. Int J Biom Bioinform 3(1):10–18

    Google Scholar 

  32. Frize M, Ennett CM, Stevenson M, Trigg HC (2001) Clinical decision support systems for intensive care units: using artificial neural networks. Med Eng Phys 23(3):217–225

    Article  CAS  PubMed  Google Scholar 

  33. Cho K, Mueller JH, Scheffer C, Erasmus PJ (2013) Application of an artificial neural network for the quantitative classification of trochlear dysplasia. J Mech Med Biol 13(04):1350059

    Article  Google Scholar 

  34. Gil D, Johnsson M, Chamizo JMG, Paya AS, Fernandez DR (2009) Application of artificial neural networks in the diagnosis of urological dysfunctions. Expert Syst Appl 36(3):5754–5760

    Article  Google Scholar 

  35. Paulin F, Santhakumaran A (2011) Classification of breast cancer by comparing back propagation training algorithms. Int J Comput Sci Eng 3(1):327–332

    Google Scholar 

  36. Al Timemy AHA, Al Naima F (2010) Comparison of different neural network approaches for the prediction of kidney dysfunction. Int J Biol Life Sci 6:84–90

    Google Scholar 

  37. Monadjemi S, Moallem P (2008) Automatic diagnosis of particular diseases using a fuzzy-neural approach. Int Rev Comput Softw 3(4):406–411

    Google Scholar 

  38. Heckerling PS, Canaris GJ, Flach SD, Tape TG, Wigton RS, Gerber BS (2007) Predictors of urinary tract infection based on artificial neural networks and genetic algorithms. Int J Med Inform 76(4):289–296

    Article  PubMed  Google Scholar 

  39. Al-Shayea Q, El-Refae G, Yaseen S (2013) Artificial neural networks for medical diagnosis using biomedical dataset. Int J Behav Healthc Res 4(1):45–63

    Article  Google Scholar 

  40. Melin R, Fugl-Meyer A (2003) On prediction of vocational rehabilitation outcome at a Swedish employability institute. J Rehabil Med 35(6):284–289

    Article  PubMed  Google Scholar 

  41. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  42. Ahmadi MH, Aghaj SSG, Nazeri A (2013) Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization. Neural Comput Appl 22(6):1141–1150

    Article  Google Scholar 

  43. García-Pedrajas N, Hervás-Martínez C, Muñoz-Pérez J (2003) COVNET: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans Neural Netw 14(3):575–596

    Article  PubMed  Google Scholar 

  44. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal Syst 2(4):303–314

    Article  Google Scholar 

  45. Tiryaki B (2008) Application of artificial neural networks for predicting the cuttability of rocks by drag tools. Tunn Undergr Space Technol 23(3):273–280

    Article  Google Scholar 

  46. Hajihassani M, Armaghani DJ, Sohaei H, Mohamad ET, Marto A (2014) Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Appl Acoust 80:57–67

    Article  Google Scholar 

  47. Hajihassani M, Armaghani DJ, Marto A, Mohamad ET (2015) Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bull Eng Geol Environ 74(3):873–886

    Article  Google Scholar 

  48. Simpson PK (1991) Artificial neural systems: foundations, paradigms, applications, and implementations. Windcrest/McGraw-Hill, New York

    Google Scholar 

  49. Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  50. Toğan V (2012) Design of planar steel frames using teaching–learning based optimization. Eng Struct 34:225–232

    Article  Google Scholar 

  51. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta (BBA) 405(2):442–451

    Article  CAS  Google Scholar 

  52. Byvatov E, Fechner U, Sadowski J, Schneider G (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inform Comput Sci 43(6):1882–1889

    Article  CAS  Google Scholar 

  53. Güler I, Übeyli ED (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 148(2):113–121

    Article  PubMed  Google Scholar 

  54. Acharya UR, Bhat PS, Iyengar SS, Rao A, Dua S (2003) Classification of heart rate data using artificial neural network and fuzzy equivalence relation. Pattern Recognit 36(1):61–68

    Article  Google Scholar 

  55. Servan-Schreiber D, Bruno RM, Carter CS, Cohen JD (1998) Dopamine and the mechanisms of cognition: part I. A neural network model predicting dopamine effects on selective attention. Biol Psychiatry 43(10):713–722

    Article  CAS  PubMed  Google Scholar 

  56. Stevens R, Ikeda J, Casillas A, Palacio-Cayetano J, Clyman S (1999) Artificial neural network-based performance assessments. Comput Hum Behav 15(3):295–313

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the authorities of physical medicine and rehabilitation clinics of Isfahan Ayatollah Kashani medical center and Al Zahra hospital, Iran for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Zolaktaf.

Ethics declarations

Conflict of interest

The authors declared no conflict of interests.

Ethical approval

An institutional review board approved all procedures before testing.

Informed consent

Prior to participation; all subjects were informed of the nature of the study and gave their written consent to participate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimzadehfini, A., Mahdavinejad, R., Zolaktaf, V. et al. Forecasting of rehabilitation treatment in sufferers from lateral displacement of patella using artificial intelligence. Sport Sci Health 14, 37–45 (2018). https://doi.org/10.1007/s11332-017-0397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-017-0397-y

Keywords

Navigation