Natural sports supplement formulation for physical endurance: a randomized, double-blind, placebo-controlled study

Abstract

Background

Natural ingredients have great demand to formulate the health supplements to enhance the physical endurance and stamina of any active persons. Fitnox™ is a natural ingredient formulation which contains the extracts of Kaempferia parviflora root, Punica granatum peel and Moringa oleifera leaves.

Aim

The study was designed to investigate the efficacy of Fitnox™ for physical endurance in healthy male adults before and after exercise for a period of 22 days.

Methods

Twenty four healthy male participants consumed 250 mg of either Fitnox™ or placebo (1:1 ratio) daily and they visited the clinic on day 0 and day 22 for physical examination. Serum chemistry, hematology and the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), heart rate, red blood cell (RBC) count, dopamine, nitrate and nitrite were analyzed before and after exercise on screening and final visit.

Results

There was a 31% increase in plasma nitrate before exercise and 45% after exercise for the test groups on day 22. Similarly, the nitrite content increased 49% and 47% for pre- and post-exercises, respectively, in plasma. In saliva, the concentrations of the nitrate increased 24% and 18% before and after exercise, respectively. The saliva nitrite also increased 18% and 11% in pre- and post-exercise. Moreover, the dopamine concentration is considerably increased (36%) after the administration of the Fitnox™ (P < 0.05). Serum inflammatory biomarker LDH decreased from 635 to 582 U/L (P < 0.05) in post-exercise and MDA decreased 47% in the Fitnox™ group (P < 0.01), but no considerable change in the placebo group.

Conclusions

It was concluded from the study that Fitnox™ not only increases the performance but it also reduces the oxidative stress to the muscles and tissues during exercise. There were no study-related adverse events reported between both the treatment groups and the results indicated that the Fitnox™ which enhances the physical endurance considerably.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Mairbäurl H (2013) Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol 4(332):1–13

    Google Scholar 

  2. 2.

    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Aziz IA, Yacoub M, Rashid L, Solieman A (2015) Malondialdehyde; lipid peroxidation plasma biomarker correlated with hepatic fibrosis in human Schistosoma mansoni infection. Acta Parasitol 60(4):735–742

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    O’Driscoll S, Height SE, Dick MC, Rees DC (2008) Serum lactate dehydrogenase activity as a biomarker in children with sickle cell disease. Br J Haematol 140(2):206–209

    PubMed  Google Scholar 

  5. 5.

    Deminice R, Rosa FT, Franco GS, Jordao AA, de Freitas EC (2013) Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition 29(9):1127–1132

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ji LL (1995) Oxidative stress during exercise: implication of antioxidant nutrients. Free Radic Biol Med 18(6):1079–1086

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Haff GG, Lehmkuhl MJ, McCoy LB, Stone MH (2003) Carbohydrate supplementation and resistance training. J Strength Cond Res 17(1):187–196

    PubMed  Google Scholar 

  8. 8.

    Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189(1–2):41–54

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Poortmans JR, Kumps A, Duez P, Fofonka A, Carpentier A, Francaux M (2005) Effect of oral creatine supplementation on urinary methylamine, formaldehyde and formate. Med Sci Sports Exerc 37(10):1717–1720

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Rujjanawate C, Kanjanapothi D, Amornlerdpison D, Pojanagaroon S (2005) Anti-gastric ulcer effect of Kaempferia parviflora. J Ethnopharmacol 102:120–122

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sutthanut K, Sripanidkulchai B, Yenjai C, Jay M (2007) Simultaneous identification and quantitation of 11 flavonoid constituents in Kaempferia parviflora by gas chromatography. J Chromatogr A 1143(1–2):227–233

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Chowdhary S, Townend JN (2001) Nitric oxide and hypertension: not just an endothelium derived relaxing factor! J Hum Hypertens 15(4):219–227

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Vallance P, Collier J, Moncada S (1989) Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2(8670):997–1000

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Chaturapanich G, Chaiyakul S, Verawatnapakul V, Yimlamai T, Pholpramool C (2012) Enhancement of aphrodisiac activity in male rats by ethanol extract of Kaempferia parviflora and exercise training. Andrologia 44:323–328

    Article  PubMed  Google Scholar 

  15. 15.

    Wattanapitayakul SK, Suwatronnakorn M, Chularojmontri L, Herunsalee A, Niumsakul S, Charuchongkolwongse S, Chansuvanich N (2007) Kaempferia parviflora ethanolic extract promoted nitric oxide production in human umbilical vein endothelial cells. J Ethnopharmacol 110(3):559–562

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Temkitthawon P, Viyoch J, Limpeanchob N, Pongamornkul W, Sirikul C, Kumpila A, Suwanborirux K, Ingkaninan K (2008) Screening for phosphodiesterase inhibitory activity of Thai medicinal plants. J Ethnopharmacol 119(2):214–217

    Article  PubMed  Google Scholar 

  17. 17.

    Temkitthawon P, Hinds TR, Beavo JA, Viyoch J, Suwanborirux K, Pongamornkul W, Sawasdee P, Ingkaninan K (2011) Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors. J Ethnopharmacol 137(3):1437–1441

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Yoshino S, Kim M, Awa R, Kuwahara H, Kano Y, Kawada T (2014) Kaempferia parviflora extract increases energy consumption through activation of BAT in mice. Food Sci Nutr 2(6):634–637

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Toda K, Kohatsu M, Takeda S, Hitoe S, Shimizu N, Shimoda H (2016) Enhancement of physical fitness by black ginger extract rich in polymethoxyflavones: a double-blind randomized crossover trial. Integr Mol Med 3(2):628–634

    Article  Google Scholar 

  20. 20.

    Li Y, Guo C, Yang J, Cheng S (2006) Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem 96(2):254–260

    CAS  Article  Google Scholar 

  21. 21.

    Ismail T, Sestili P, Akhtar S (2012) Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol 143(2):397–405

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Singh RP, Murthy CKN, Jayaprakasha GK (2002) Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem 50:81–86

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Negi PS, Jayaprakasha GK, Jena BS (2003) Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chem 80(3):393–397

    CAS  Article  Google Scholar 

  24. 24.

    Murthy CKN, Jayaprakasha GK, Singh RP (2002) Studies on antioxidant activity of pomegranate (Punica granatum) peel extract using in vivo models. J Agric Food Chem 50:4791–4795

    CAS  Article  Google Scholar 

  25. 25.

    Aviram M, Volkova N, Coleman R, Dreher M, Reddy MK, Ferreira D, Rosenblat M (2008) Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic: studies in vivo in atherosclerotic apolipoprotein e-deficient (E 0) mice and in vitro in cultured macrophages and lipoproteins. J Agric Food Chem 56(3):1148–1157

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Edison TJ, Sethuraman MG (2013) Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 104:262–264

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Makkar HPS, Becker K (1997) Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agric Sci Camb 128:311–322

    Article  Google Scholar 

  28. 28.

    Faizi S, Siddiqui BS, Saleem R, Siddiqui S, Aftab K, Gilani A (1992) Isolation and structure elucidation of novel hypotensive agents, niazinin A, niazinin B, niazimicin and niaziminin A+B from Moringa oleifera: the first naturally occurring thiocarbamates. J Chem Soc Perkin Trans 1:3237–3241

    Article  Google Scholar 

  29. 29.

    Vongsak B, Sithisarn P, Gritsanapan W (2014) Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam. J Chromatogr Sci 52(7):641–645

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Iskandar I, Hadju V, As’ad S, Natsir R (2015) Effect of Moringa oleifera leaf extracts supplementation in preventing maternal anemia and low-birth-weight. IJSRP 5(2):1–3

    Google Scholar 

  31. 31.

    Nadimin Hadjub V, As’ad S, Bucharid A (2015) The extract of moringa leaf has an equivalent effect to iron folic acid in increasing hemoglobin levels of pregnant women: a randomized control study in the coastal area of Makassar. IJSBAR 22(1):287–294

    Google Scholar 

  32. 32.

    Ingale SP, Gandhi FP (2016) Effect of aqueous extract of Moringa oleifera leaves on pharmacological models of epilepsy and anxiety in mice. Int J Epilepsy 3(1):12–19

    Article  Google Scholar 

  33. 33.

    Prabsattroo T, Wattanathorn J, Iamsaard S, Somsapt P, Sritragool O, Thukhummee W, Muchimapura S (2015) Moringa oleifera extract enhances sexual performance in stressed rats. J Zhejiang Univ Sci B 16(3):179–190

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Oghenebrorhie O, Oghenesuvwe O (2016) Performance and haematological characteristics of broiler finisher fed Moringa oleifera leaf meal diets. J Northeast Agric Univ 23(1):28–34

    Google Scholar 

  35. 35.

    Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B (2014) Transdermal permeation of Kaempferia parviflora methoxyflavones from isopropyl myristate-based vehicles. AAPS PharmSciTech 15(4):947–955

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Box JD (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17(5):511–525

    CAS  Article  Google Scholar 

  37. 37.

    Ezeabar CA, Okeke CU, Aziagba BO, Ilodibia CV, Emeka AN (2014) Determination of saponin content of various parts of six citrus species. Int Res J Pure Appl Chem 4(1):137–143

    Article  Google Scholar 

  38. 38.

    Cooper KH (1968) A means of assessing maximal oxygen intake. J Am Med Assoc 203:135–138

    Google Scholar 

  39. 39.

    Bruce RA, Lovejoy FW Jr, Pearson R, Yu PNG, Brothers GB, Velasquez T (1949) Normal respiratory and circulatory pathways of adaptation in exercise. J Clin Invest 28(6):1423–1430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Nes BM, Janszky I, Wisløff U, Støylen A, Karlsen T (2013) Age-predicted maximal heart rate in healthy subjects: the HUNT fitness study. Scand J Med Sci Sports 23(6):697–704

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Croitoru MD (2012) Nitrite and nitrate can be accurately measured in samples of vegetal and animal origin using an HPLC-UV/VIS technique. J Chromatogr B 911:154–161

    CAS  Article  Google Scholar 

  42. 42.

    Sahlin K, Harris RC, Nylind B, Hultman E (1976) Lactate content and pH in muscle obtained after dynamic exercise. Pflugers Arch 367(2):143–149

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Facey A, Irving R, Dilworth L (2013) Overview of lactate metabolism and the implications for athletes. Am J Sports Med 1(3):42–46

    Google Scholar 

  44. 44.

    Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219(1):1–14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219–236

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ransford CP (1982) A role for amines in the antidepressant 383 effect of exercise: a review. Med Sci Sports Exerc 14(1):1–10

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Bove AA, Dewey JD, Tyce GM (1984) Increased conjugated dopamine in plasma after exercise training. J Lab Clin Med 104(1):77–85

    CAS  PubMed  Google Scholar 

  49. 49.

    Krimer LS, Muly EC, Williams GV, Goldman-Rakic PS (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1(4):286–289

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Sikirić P, Rotkvić I, Mise S, Krizanac S, Gjuris V, Jukić J, Suchanek E, Petek M, Udovicić I, Kalogjera L (1988) The influence of dopamine agonists and antagonists on indomethacin lesions in stomach and small intestine in rats. Eur J Pharmacol 158(1–2):61–67

    Article  PubMed  Google Scholar 

  51. 51.

    Deslandes A, Moraes H, Ferreira C, Veiga H, Silveira H, Mouta R, Pompeu FA, Coutinho ES, Laks J (2009) Exercise and mental health: many reasons to move. Neuropsychobiology 59(4):191–198

    Article  PubMed  Google Scholar 

  52. 52.

    Promthep K, Eungpinichpong W, Sripanidkulchai B, Chatchawan U (2015) Effect of Kaempferia parviflora extract on physical fitness of soccer players: a randomized double-blind placebo-controlled trial. Med Sci Monit Basic Res 21:100–108

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Wattanathorn J, Muchimapura S, Tong-Un T, Saenghong N, Thukhum-Mee W, Sripanidkulchai B (2012) Positive modulation effect of 8-week consumption of Kaempferia parviflora on health-related physical fitness and oxidative status in healthy elderly volunteers. Evid Based Complement Alternat Med:1–7

  54. 54.

    Toda K, Hitoe S, Takeda S, Shimoda H (2016) Black ginger extract increases physical fitness performance and muscular endurance by improving inflammation and energy metabolism. Heliyon 2:e00115

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Weerateerangkul P, Palee S, Chinda K, Chattipakorn SC, Chattipakorn N (2012) Effects of Kaempferia parviflora wall. ex. baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts. J Cardiovasc Pharmacol 60(3):299–309

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Toda K, Takeda S, Hitoe S, Nakamura S, Matsuda H, Shimoda H (2016) Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism. J Nat Med 70(2):163–172

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sreeraj Gopi.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

All procedures were approved by the Clinical Trials Registry-India the identifier REF/2016/02/010815 on 27th February 2016 and were carried out in accordance with the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 716 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gopi, S., Jacob, J., Varma, K. et al. Natural sports supplement formulation for physical endurance: a randomized, double-blind, placebo-controlled study. Sport Sci Health 13, 183–194 (2017). https://doi.org/10.1007/s11332-017-0352-y

Download citation

Keywords

  • Natural sports supplement formulation
  • Kaempferia parviflora
  • Punica granatum
  • Moringa oleifera
  • NO levels in blood