Skip to main content
Log in

Optimization of sEMG electrode positioning in vastus lateralis muscle during neuromuscular electrical stimulation

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to estimate spatial activation of vastus lateralis (VL) muscle during electrical stimulation applied to the entire muscle in absence of fatigue and properly eliminating the influence of stimulation artifact.

Methods

Ten healthy men were enrolled in this study. The current was delivered to VL by two electrodes placed proximally and distally, for 5 s at the higher intensity that subjects can tolerate. Superficial electromyography (sEMG) signals were acquired using a bidimensional array of 63 electrodes positioned between the two stimulating electrodes along muscle fibers. For each subjects average rectified value (ARV) was estimated on normalized sEMG signals dividing bidimensional array in two areas, then the barycenter of the more active area was estimated. Finally, average barycenter coordinates were calculated among subjects since Kruskal–Wallis and Dunn-Sidak post hoc test confirmed no statistical differences among subjects in the more active area.

Results

ARV analysis showed that the VL more active area was located laterally and distally with respect to the center of the bidimensional array. Mean and standard deviation among subjects revealed that barycenter of more active zone in medio-lateral direction was between electrodes 1 and 2 and in proximal–distal direction was between electrodes 10 and 11. This location corresponds to a well-defined area in the framework of anatomical landmarks defined in the text.

Conclusions

It was possible to assess that VL during electrical stimulation was activated differently throughout its volume. In particular, distal-lateral portion of the muscle was more active with respect to the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hultman E, Sjöholm H, Jäderholm-Ek I, Krynicki J (1981) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch Eur J Physiol 2:139–141. doi:10.1007/BF00581062

    Google Scholar 

  2. Filipovic A, Kleinöder H, Dörmann U, Mester J (2011) Electromyostimulation: a systematic review of the effects of different EMS methods on selected strength parameters in trained and elite athletes. J Strength Cond Res 26:2600–2614. doi:10.1519/JSC.0b013e31823f2cd1

    Article  Google Scholar 

  3. Malatesta D, Cattaneo F, Dugnani S, Maffiuletti N (2003) Effects of electromyostimulation training and volleyball practice on jumping ability. J Strength Cond Res 17:573–579

    PubMed  Google Scholar 

  4. Maffiuletti NA, Roig M, Karatzanos E, Nanas S (2013) Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Med 11:137. doi:10.1186/1741-7015-11-137

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lamb SE, Oldham JA, Morse RE, Evans JG (2002) Neuromuscular stimulation of the quadriceps muscle after hip fracture: a randomized controlled trial. Arch Phys Med Rehabil 83:1087–1092. doi:10.1053/apmr.2002.33645

    Article  PubMed  Google Scholar 

  6. Snyder-Mackler L, Delitto A, Stralka SW, Bailey SL (1994) Use of electrical stimulation to enhance recovery of quadriceps femoris muscle force production in patients following anterior cruciate ligament reconstruction. Phys Ther 74:901–907

    CAS  PubMed  Google Scholar 

  7. Bélanger M, Stein RB, Wheeler GD et al (2000) Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil 81:1090–1098. doi:10.1053/apmr.2000.7170

    Article  PubMed  Google Scholar 

  8. Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg Am 77:1166–1173

    CAS  PubMed  Google Scholar 

  9. Bjordal JM, Johnson MI, Ljunggreena AE (2003) Transcutaneous electrical nerve stimulation (TENS) can reduce postoperative analgesic consumption. A meta-analysis with assessment of optimal treatment parameters for postoperative pain. Eur J Pain London Engl 7:181–188. doi:10.1016/S1090-3801(02)00098-8

    Article  Google Scholar 

  10. Merletti R, Knaflitz M, DeLuca CJ (1992) Electrically evoked myoelectric signals. Crit Rev Biomed Eng 19:293–340

    CAS  PubMed  Google Scholar 

  11. Farina D, Blanchietti A, Pozzo M, Merletti R (2004) M-wave properties during progressive motor unit activation by transcutaneous stimulation. J Appl Physiol 97:545–555

    Article  PubMed  Google Scholar 

  12. Minetto MA, Botter A, Ravenni R et al (2008) Reliability of a novel neurostimulation method to study involuntary muscle phenomena. Muscle Nerve 37:90–100. doi:10.1002/mus.20903

    Article  PubMed  Google Scholar 

  13. Botter A, Merletti R, Minetto MA (2009) Pulse charge and not waveform affects M-wave properties during progressive motor unit activation. J Electromyogr Kinesiol 19:564–573. doi:10.1016/j.jelekin.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  14. Rainoldi A, Melchiorri G, Caruso I (2004) A method for positioning electrodes during surface EMG recordings in lower limb muscles. J Neurosci Methods 134:37–43. doi:10.1016/j.jneumeth.2003.10.014

    Article  CAS  PubMed  Google Scholar 

  15. Sacco ICN, Gomes AA, Otuzi ME et al (2009) A method for better positioning bipolar electrodes for lower limb EMG recordings during dynamic contractions. J Neurosci Methods 180:133–137. doi:10.1016/j.jneumeth.2009.02.017

    Article  PubMed  Google Scholar 

  16. Freeman J (1971) An electronic stimulus artifact suppressor. Electroencephalogr Clin Neurophysiol 31:170–172. doi:10.1016/0013-4694(71)90188-X

    Article  CAS  PubMed  Google Scholar 

  17. O’Keeffe DT, Lyons GM, Donnelly AE, Byrne CA (2001) Stimulus artifact removal using a software-based two-stage peak detection algorithm. J Neurosci Methods 109:137–145. doi:10.1016/S0165-0270(01)00407-1

    Article  PubMed  Google Scholar 

  18. Mandrile F, Farina D, Pozzo M, Merletti R (2003) Stimulation artifact in surface EMG signal: effect of the stimulation waveform, detection system, and current amplitude using hybrid stimulation technique. IEEE Trans Neural Syst Rehabil Eng 11:407–415. doi:10.1109/TNSRE.2003.819791

    Article  PubMed  Google Scholar 

  19. Filipovic A, Kleinöder H, Dörmann U, Mester J (2011) Electromyostimulation: a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. J Strength Cond Res 25:3218–3238. doi:10.1519/JSC.0b013e318212e3ce

    Article  PubMed  Google Scholar 

  20. Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495. doi:10.1002/mus.20714

    Article  PubMed  Google Scholar 

  21. Gobbo M, Gaffurini P, Bissolotti L et al (2011) Transcutaneous neuromuscular electrical stimulation: influence of electrode positioning and stimulus amplitude settings on muscle response. Eur J Appl Physiol 111:2451–2459. doi:10.1007/s00421-011-2047-4

    Article  CAS  PubMed  Google Scholar 

  22. Gobbo M, Maffiuletti NA, Orizio C, Minetto MA (2014) Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J Neuroeng Rehabil 11:17

    Article  PubMed Central  PubMed  Google Scholar 

  23. Barbero M, Merletti R, Rainoldi A (2012) Atlas of muscle innervation zones, 1st edn. Springer, Milan, Italy. ISBN:978-88-470-2462-5

  24. Botter A, Oprandi G, Lanfranco F et al (2011) Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning. Eur J Appl Physiol 111:2461–2471. doi:10.1007/s00421-011-2093-y

    Article  PubMed  Google Scholar 

  25. Farina D, Merletti R, Indino B et al (2002) Surface EMG crosstalk between knee extensor muscles: experimental and model results. Muscle Nerve 26:681–695. doi:10.1002/mus.10256

    Article  PubMed  Google Scholar 

  26. Merletti R, Farina D, Gazzoni M (2003) The linear electrode array: a useful tool with many applications. J Electromyogr Kinesiol 13:37–47

    Article  PubMed  Google Scholar 

  27. De Luca CJ, Merletti R (1988) Surface myoelectric signal cross-talk among muscles of the leg. Electroencephalogr Clin Neurophysiol 69:568–575

    Article  PubMed  Google Scholar 

  28. Lloyd T, De Domenico G, Strauss G, Singer K (1986) A review of the use of electro-motor stimulation in human muscle. Aust J Physiother 32:18–30

    Article  CAS  PubMed  Google Scholar 

  29. Petrofsky J, Laymon M, Prowse M et al (2009) The transfer of current through skin and muscle during electrical stimulation with sine, square, Russian and interferential waveforms. J Med Eng Technol 33:170–181. doi:10.1080/03091900802054580

    Article  CAS  PubMed  Google Scholar 

  30. Parker MG, Bennett MJ, Hieb MA et al (2003) Strength response in human femoris muscle during 2 neuromuscular electrical stimulation programs. J Orthop Sports Phys Ther 33:719–726

    Article  PubMed  Google Scholar 

  31. Becker I, Baxter GD, Woodley SJ (2010) The vastus lateralis muscle: an anatomical investigation. Clin Anat 23:575–585. doi:10.1002/ca.20974

    Article  CAS  PubMed  Google Scholar 

  32. Tarulli AW, Chin AB, Lee KS, Rutkove SB (2007) Impact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: an initial assessment. Clin Neurophysiol 118:2393–2397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Doheny EP, Caulfield BM, Minogue CM, Lowery MM (2010) Effect of subcutaneous fat thickness and surface electrode configuration during neuromuscular electrical stimulation. Med Eng Phys 32:468–474. doi:10.1016/j.medengphy.2010.03.004

    Article  PubMed  Google Scholar 

  34. Hedayatpour N, Arendt-Nielsen L, Farina D (2008) Non-uniform electromyographic activity during fatigue and recovery of the vastus medialis and lateralis muscles. J Electromyogr Kinesiol 18:390–396. doi:10.1016/j.jelekin.2006.12.004

    Article  PubMed  Google Scholar 

  35. Kouzaki M, Fujibayashi M, Moritani T et al (2012) Spatial EMG potential distribution pattern of vastus lateralis muscle during isometric knee extension in young and elderly men. J Electromyogr Kinesiol 22:74–79. doi:10.1016/j.jelekin.2011.09.010

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by OT Bioelettronica and Fondazione C.R.T. We wish to thank IACER s.r.l. since they provided the equipment.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Rainoldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosso, V., Rainoldi, A. Optimization of sEMG electrode positioning in vastus lateralis muscle during neuromuscular electrical stimulation. Sport Sci Health 10, 253–260 (2014). https://doi.org/10.1007/s11332-014-0202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-014-0202-0

Keywords

Navigation