Skip to main content
Log in

Optimisation of starting conditions in track cycling

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

Several factors may influence cycling performance and effort intensity during cycling competitions. The present study aimed to investigate the conditions that may influence the initial acceleration during the first 5 m of a cycling competition, particularly riding position, starting angle of the crank and hand position on handlebars. To this aim, eight male cyclists amateur were tested in laboratory and on track.

Methods

Surface electromyography was also used to verify the influence of upper body on muscle activity. Moreover, to verify the results, 59 professional cyclists were observed on the track using the same set-up.

Results

Standing position increased by 10 % the initial speed and acceleration compared to seated position. A starting crank angle of 71° and the position of the hands on the upper bar of the handlebar also improved the acceleration. The effects of these parameters were additive and, therefore, the acceleration with standing position and initial crank angle of 71° was about 35 % greater than that with seated position with an initial crank angle of 47°.

Conclusions

These effects were especially important when analysing the results of competitive athletes, which also showed better initial acceleration under spontaneously adopted optimal initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alvarez G, Vinyolas J (1996) A new bicycle pedal design for on-road measurements of cycling forces. J Appl Biomech 12:130–142

    Google Scholar 

  2. Ashe MC, Scroop GC, Frisken PI, Amery CA, Wilkins MA, Khan KM (2003) Body position affects performance in untrained cyclists. Br J Sports Med 37:441–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Attene G, Pizzolato F, Calcagno G, Ibba G, Pinna M, Salernitano G, Padulo J (2014) Sprint vs. intermittent training in young female basketball players. J Sports Med Phys Fit 54:154–161

    CAS  Google Scholar 

  4. Baker J, Brown E, Hill G, Phillips G, Williams R, Davies B (2002) Handgrip contribution to lactate production and leg power during high-intensity exercise. Med Sci Sports Exerc 34:1037–1040

    Article  CAS  PubMed  Google Scholar 

  5. Belli A, Rey S, Bonnefoy R, Lacour JR (1992) A simple device for kinematic measurements of human movement. Ergonomics 35:177–186

    Article  Google Scholar 

  6. Bertucci W, Hourde C, Manolova A, Vicenzino B (2007) Facteurs mécaniques de la performance lors de la phase d’accélération en BMX chez des pilotes entraînés. Sci Sports 22:179–181

    Article  Google Scholar 

  7. Bertucci W, Taiar R, Grappe F (2005) Differences between sprint tests under laboratory and actual cycling conditions. J Sports Med Phys Fit 45:277–283

    CAS  Google Scholar 

  8. Chamari K, Laffaye G, Ardigò LP, Padulo J (2013) Concentric and eccentric exercise. J Pain 14:1531–1532

    Article  PubMed  Google Scholar 

  9. Chapman A, Vicenzino B, Blanch P, Hodges P (2009) Do differences in muscle recruitment between novice and elite cyclists reflect different movement patterns or less skilled muscle recruitment? J Sci Med Sport 12:31–34

    Article  PubMed  Google Scholar 

  10. Chapman AR, Vicenzino B, Blanch P, Hodges PW (2007) Leg muscle recruitment during cycling is less developed in triathletes than cyclists despite matched cycling training loads. Exp Brain Res 181:503–518

    Article  PubMed  Google Scholar 

  11. Chapman AR, Vicenzino B, Blanch P, Hodges PW (2008) Patterns of leg muscle recruitment vary between novice and highly trained cyclists. J Electromyogr Kinesiol 18:359–371

    Article  PubMed  Google Scholar 

  12. Chapman AR, Vicenzino B, Blanch P, Knox JJ, Dowlan S, Hodges PW (2008) The influence of body position on leg kinematics and muscle recruitment during cycling. J Sci Med Sport 11:519–526

    Article  PubMed  Google Scholar 

  13. Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, Abraham LD, Petrek GW (1991) Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 23:93–107

    Article  CAS  PubMed  Google Scholar 

  14. Craig NP, Norton KI (2001) Characteristics of track cycling. Sports Med 31:457–468

    Article  CAS  PubMed  Google Scholar 

  15. de Koning JJ, Bobbert MF, Foster C (1999) Determination of optimal pacing strategy in track cycling with an energy flow model. J Sci Med Sport 2:266–277

    Article  PubMed  Google Scholar 

  16. Debraux P, Grappe F, Manolova AV, Bertucci W (2011) Aerodynamic drag in cycling: methods of assessment. Sports Biomech 10:197–218

    Article  PubMed  Google Scholar 

  17. Duc S, Bertucci W, Pernin JN, Grappe F (2008) Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways. J Electromyogr Kinesiol 18:116–127

    Article  CAS  PubMed  Google Scholar 

  18. Faria IE (1992) Energy expenditure, aerodynamics and medical problems in cycling. An update. Sports Med 14:43–63

    Article  CAS  PubMed  Google Scholar 

  19. Grappe F, Candau R, Busso T, Rouillon JD (1998) Effect of cycling position on ventilatory and metabolic variables. Int J Sports Med 19:336–341

    Article  CAS  PubMed  Google Scholar 

  20. Hansen EA, Waldeland H (2008) Seated versus standing position for maximization of performance during intense uphill cycling. J Sports Sci 26:977–984

    Article  PubMed  Google Scholar 

  21. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  CAS  PubMed  Google Scholar 

  22. Hoes MJ, Binkhorst RA, Smeekes-Kuyl AE, Vissers AC (1968) Measurement of forces exerted on pedal and crank during work on a bicycle ergometer atdifferent loads. Int Z Angew Physiol 26:33–42

    CAS  PubMed  Google Scholar 

  23. Hug F, Bendahan D, Le Fur Y, Cozzone PJ, Grelot L (2004) Heterogeneity of muscle recruitment pattern during pedaling in professional road cyclists: a magnetic resonance imaging and electromyography study. Eur J Appl Physiol 92:334–342

    Article  PubMed  Google Scholar 

  24. Hull ML, Hawkins DA (1990) Analysis of work in multisegmental movements: application to cycling. In: Winters JM, Woo SLY (eds) Multiple muscle systems, pp 621–638

  25. Ibba G, Pizzolato F, Di Michele R, Scorcu M, Attene G, Paradisis G, Anon P, Padulo J (2014) Uphill sprint vs. intermittent running in young soccer players: acute physiological responses. Sport Sci Health (Epub ahead of print)

  26. Li L (2004) Neuromuscular control and coordination during cycling. Res Q Exerc Sport 75:16–22

    Article  PubMed  Google Scholar 

  27. Li L, Caldwell GE (1998) Muscle coordination in cycling: effect of surface incline and posture. J Appl Physiol 85:927–934

    CAS  PubMed  Google Scholar 

  28. Martin JC, Lamb SM, Brown NA (2002) Pedal trajectory alters maximal single-leg cycling power. Med Sci Sports Exerc 34:1332–1336

    Article  PubMed  Google Scholar 

  29. Martin JC, Spirduso WW (2001) Determinants of maximal cycling power: crank length, pedaling rate and pedal speed. Eur J Appl Physiol 84:413–418

    Article  CAS  PubMed  Google Scholar 

  30. Mateo M, Blasco-Lafarga C, Zabala M (2011) Pedaling power and speed production vs. technical factors and track difficulty in bicycle motocross cycling. J Strength Cond Res 25:3248–3256

    Article  PubMed  Google Scholar 

  31. Millet GP, Tronche C, Fuster N, Candau R (2002) Level ground and uphill cycling efficiency in seated and standing positions. Med Sci Sports Exerc 34:1645–1652

    Article  PubMed  Google Scholar 

  32. Muraoka T, Kawakami Y, Tachi M, Fukunaga T (2001) Muscle fiber and tendon length changes in the human vastus lateralis during slow pedaling. J Appl Physiol 91:2035–2040

    CAS  PubMed  Google Scholar 

  33. Padulo J, D’Ottavio S, Pizzolato F, Smith L, Annino G (2012) Kinematic analysis of soccer players in shuttle running. Int J Sports Med 33:459–462

    Article  CAS  PubMed  Google Scholar 

  34. Padulo J, Annino G, D’Ottavio S, Vernillo G, Smith L, Migliaccio GM, Tihanyi J (2013) Footstep analysis at different slopes and speeds in elite race walking. J Strength Cond Res 27:125–129

    Article  PubMed  Google Scholar 

  35. Padulo J, Annino G, Migliaccio GM, D’Ottavio S, Tihanyi J (2012) Kinematics of running at different slopes and speeds. J Strength Cond Res 26:1331–1339

    Article  PubMed  Google Scholar 

  36. Padulo J, Annino G, Tihanyi J, Calcagno G, Vando S, Smith L, Vernillo G, La Torre A, D’Ottavio S (2013) Uphill racewalking at iso-efficiency speed. J Strength Cond Res 27:1964–1973

    Article  PubMed  Google Scholar 

  37. Padulo J, Degortes N, Migliaccio GM, Attene G, Smith L, Salernitano G, Annino G, D’Ottavio S (2013) Footstep manipulation during uphill running. Int J Sports Med 34:244–247

    CAS  PubMed  Google Scholar 

  38. Padulo J, Di Capua R, Viggiano D (2012) Pedaling time variability is increased in dropped riding position. Eur J Appl Physiol 112:3161–3165

    Article  PubMed  Google Scholar 

  39. Padulo J, Filingeri D, Chamari K, Migliaccio GM, Calcagno G, Bosco G, Annino G, Tihanyi J, Pizzolato F (2014) Acute effects of whole-body vibration on running gait in marathon runners. J Sports Sci 32:1120–1126

    Article  PubMed  Google Scholar 

  40. Padulo J, Laffaye G, Ardigò LP, Chamari K (2013) Concentric and eccentric: muscle contraction or exercise? J Hum Kinet 37:5–6

    Article  PubMed Central  PubMed  Google Scholar 

  41. Padulo J, Mignogna P, Mignardi S, Tonni F, D’Ottavio S (2012) Effect of different pushing speeds on bench press. Int J Sports Med 33:376–380

    Article  CAS  PubMed  Google Scholar 

  42. Padulo J, Oliva F, Frizziero A, Maffulli N (2013) Muscle, Ligaments and Tendons Journal. Basic principles and recommendations in clinical and field science research. Muscles Ligaments Tendons J 3:250–252

    PubMed Central  PubMed  Google Scholar 

  43. Padulo J, Powell D, Milia R, Ardigò LP (2013) A paradigm of uphill running. PLoS One 8:e69006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Padulo J, Tiloca A, Powell D, Granatelli G, Bianco A, Paoli A (2013) EMG amplitude of the biceps femoris during jumping compared to landing movements. Springerplus 2:520

    Article  PubMed Central  PubMed  Google Scholar 

  45. Peiffer JJ, Abbiss CR, Chapman D, Laursen PB, Parker DL (2008) Physiological characteristics of masters-level cyclists. J Strength Cond Res 22:1434–1440

    Article  PubMed  Google Scholar 

  46. Reiser RF, Maines JM, Eisenmann JC, Wilkinson JG (2002) Standing and seated Wingate protocols in human cycling. A comparison of standard parameters. Eur J Appl Physiol 88:152–157

    Article  PubMed  Google Scholar 

  47. Stone C, Hull ML (1995) The effect of rider weight on rider-induced loads during common cycling situations. J Biomech 28:365–375

    Article  CAS  PubMed  Google Scholar 

  48. Too D (1994) The effect of trunk angle on power production in cycling. Res Q Exerc Sport 65:308–315

    Article  CAS  PubMed  Google Scholar 

  49. Zabala M, Requena B, Sanchez-Munoz C, Gonzalez-Badillo JJ, Garcia I, Oopik V, Paasuke M (2008) Effects of sodium bicarbonate ingestion on performance and perceptual responses in a laboratory-simulated BMX cycling qualification series. J Strength Cond Res 22:1645–1653

    Article  PubMed  Google Scholar 

  50. Zagatto AM, Padulo J, Muller PT, Miyagi WE, Malta ES, Papoti M (2014) Hyperlactemia induction modes affect the lactate minimum power and physiological responses in cycling. J Strength Cond Res (Epub ahead of print)

Download references

Acknowledgments

This study was not supported by any sources of funding.

Conflict of interest

There are no conflicts of interest in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny Padulo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padulo, J., Laffaye, G., Bertucci, W. et al. Optimisation of starting conditions in track cycling. Sport Sci Health 10, 189–198 (2014). https://doi.org/10.1007/s11332-014-0192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-014-0192-y

Keywords

Navigation