Skip to main content

Advertisement

Log in

The immune response to arterial damage in a mouse model of intermittent hypoxia: a transcriptomics analysis

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Mice can develop arterial damage and even atherosclerosis under intermittent hypoxia (IH); however, the specific mechanism of arterial damage induced by IH remains unclear. Hence, this research aimed to illustrate the underlying mechanism linking IH to arterial injury.

Materials and methods

The differential gene expression of the thoracic aorta under normoxia or IH mice was analyzed utilizing RNA sequencing. Furthermore, GO, KEGG pathway, and CIBERSORT analyses were carried out. For verification of the expression of candidate genes affected by IH, quantitative RT-qPCR (qRT-PCR) was conducted. Immunohistochemical (IHC) staining revealed immune cell infiltration in the thoracic aorta.

Results

The thickness of the intima-media of the mouse aorta was increased, and the fiber structure was disordered under IH. Transcriptomics analysis showed that in the aorta, 1137 upregulated genes and 707 downregulated genes were affected by IH, significantly related to the activation of the immune system and cell adhesion. Furthermore, B cell infiltration around the aorta was observed under IH.

Conclusions

IH might lead to structural changes in the aorta by activating the immune response and enhancing cell adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

References

  1. Jordan AS, McSharry DG, Malhotra A (2014) Adult obstructive sleep apnoea. Lancet 383:736–747. https://doi.org/10.1016/s0140-6736(13)60734-5

    Article  PubMed  Google Scholar 

  2. Lévy P, Kohler M, McNicholas WT, Barbé F, McEvoy RD, Somers VK, Lavie L, Pépin JL (2015) Obstructive sleep apnoea syndrome. Nat Rev Dis Primers 1:15015. https://doi.org/10.1038/nrdp.2015.15

    Article  PubMed  Google Scholar 

  3. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T (2008) Sleep apnea and cardiovascular disease: an American Heart Association/american College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation 118:1080–1111. https://doi.org/10.1161/circulationaha.107.189375

    Article  PubMed  Google Scholar 

  4. Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373:82–93. https://doi.org/10.1016/s0140-6736(08)61622-0

    Article  PubMed  Google Scholar 

  5. Ma L, Zhang J, Liu Y (2016) Roles and Mechanisms of Obstructive Sleep Apnea-Hypopnea Syndrome and Chronic Intermittent Hypoxia in Atherosclerosis: Evidence and Prospective. Oxid Med Cell Longev 2016:8215082. https://doi.org/10.1155/2016/8215082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song D, Fang G, Greenberg H, Liu SF (2015) Chronic intermittent hypoxia exposure-induced atherosclerosis: a brief review. Immunol Res 63:121–130. https://doi.org/10.1007/s12026-015-8703-8

    Article  CAS  PubMed  Google Scholar 

  7. Song F, Zou J, Song Z, Xu H, Qian Y, Zhu H, Liu S, Guan J, Chen J, Yi H (2020) Association of Adipocytokines With Carotid Intima -Media Thickness and Arterial Stiffness in Obstructive Sleep Apnea Patients. Front Endocrinol (Lausanne) 11:177. https://doi.org/10.3389/fendo.2020.00177

    Article  CAS  PubMed  Google Scholar 

  8. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667. https://doi.org/10.1161/circulationaha.105.556746

    Article  CAS  PubMed  Google Scholar 

  9. Kylintireas I, Craig S, Nethononda R, Kohler M, Francis J, Choudhury R, Stradling J, Neubauer S (2012) Atherosclerosis and arterial stiffness in obstructive sleep apnea–a cardiovascular magnetic resonance study. Atherosclerosis 222:483–489. https://doi.org/10.1016/j.atherosclerosis.2012.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang G, Song D, Ye X, Mao SZ, Liu G, Liu SF (2012) Chronic intermittent hypoxia exposure induces atherosclerosis in ApoE knockout mice: role of NF-κB p50. Am J Pathol 181:1530–1539. https://doi.org/10.1016/j.ajpath.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  11. Jun J, Reinke C, Bedja D, Berkowitz D, Bevans-Fonti S, Li J, Barouch LA, Gabrielson K, Polotsky VY (2010) Effect of intermittent hypoxia on atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 209:381–386. https://doi.org/10.1016/j.atherosclerosis.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  12. Dematteis M, Godin-Ribuot D, Arnaud C, Ribuot C, Stanke-Labesque F, Pépin JL, Lévy P (2009) Cardiovascular consequences of sleep-disordered breathing: contribution of animal models to understanding the human disease. Ilar j 50:262–281. https://doi.org/10.1093/ilar.50.3.262

    Article  CAS  PubMed  Google Scholar 

  13. Dematteis M, Julien C, Guillermet C, Sturm N, Lantuejoul S, Mallaret M, Lévy P, Gozal E (2008) Intermittent hypoxia induces early functional cardiovascular remodeling in mice. Am J Respir Crit Care Med 177:227–235. https://doi.org/10.1164/rccm.200702-238OC

    Article  PubMed  Google Scholar 

  14. Savransky V, Nanayakkara A, Li J, Bevans S, Smith PL, Rodriguez A, Polotsky VY (2007) Chronic intermittent hypoxia induces atherosclerosis. Am J Respir Crit Care Med 175:1290–1297. https://doi.org/10.1164/rccm.200612-1771OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnaud C, Beguin PC, Lantuejoul S, Pepin JL, Guillermet C, Pelli G, Burger F, Buatois V, Ribuot C, Baguet JP, Mach F, Levy P, Dematteis M (2011) The inflammatory pre atherosclerotic remodeling induced by intermittent hypoxia is attenuated by RANTES/CCL5 inhibition. Am J Respir Crit Care Med 184:724–731. https://doi.org/10.1164/rccm.201012-2033OC

    Article  CAS  PubMed  Google Scholar 

  16. Drager LF, Yao Q, Hernandez KL, Shin MK, Bevans-Fonti S, Gay J, Sussan TE, Jun JC, Myers AC, Olivecrona G, Schwartz AR, Halberg N, Scherer PE, Semenza GL, Powell DR, Polotsky VY (2013) Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4. Am J Respir Crit Care Med 188:240–248. https://doi.org/10.1164/rccm.201209-1688OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arnaud C, Poulain L, Lévy P, Dematteis M (2011) Inflammation contributes to the atherogenic role of intermittent hypoxia in apolipoprotein-E knock out mice. Atherosclerosis 219:425–431. https://doi.org/10.1016/j.atherosclerosis.2011.07.122

    Article  CAS  PubMed  Google Scholar 

  18. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393. https://doi.org/10.1016/j.jacc.2007.02.059

    Article  CAS  PubMed  Google Scholar 

  19. Hu JJ, Ambrus A, Fossum TW, Miller MW, Humphrey JD, Wilson E (2008) Time courses of growth and remodeling of porcine aortic media during hypertension: a quantitative immunohistochemical examination. J Histochem Cytochem 56:359–370. https://doi.org/10.1369/jhc.7A7324.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burrows N, Bashford-Rogers RJM, Bhute VJ, Peñalver A, Ferdinand JR, Stewart BJ, Smith JEG, Deobagkar-Lele M, Giudice G, Connor TM, Inaba A, Bergamaschi L, Smith S, Tran MGB, Petsalaki E, Lyons PA, Espeli M, Huntly BJP, Smith KGC, Cornall RJ, Clatworthy MR, Maxwell PH (2020) Dynamic regulation of hypoxia-inducible factor-1α activity is essential for normal B cell development. Nat Immunol 21:1408–1420. https://doi.org/10.1038/s41590-020-0772-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie H, Yin J, Bai Y, Peng H, Zhou X, Bai J (2019) Differential expression of immune markers in the patients with obstructive sleep apnea/hypopnea syndrome. Eur Arch Otorhinolaryngol 276:735–744. https://doi.org/10.1007/s00405-018-5219-6

    Article  PubMed  Google Scholar 

  22. Paci P, Fiscon G, Conte F, Licursi V, Morrow J, Hersh C, Cho M, Castaldi P, Glass K, Silverman EK, Farina L (2020) Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Sci Rep 10:3361. https://doi.org/10.1038/s41598-020-60228-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Theodorou E, Nezos A, Antypa E, Ioakeimidis D, Koutsilieris M, Tektonidou M, Moutsopoulos HM, Mavragani CP (2018) B-cell activating factor and related genetic variants in lupus related atherosclerosis. J Autoimmun 92:87–92. https://doi.org/10.1016/j.jaut.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  24. Stanke-Labesque F, Pépin JL, de Jouvencel T, Arnaud C, Baguet JP, Petri MH, Tamisier R, Jourdil JF, Lévy P, Bäck M (2012) Leukotriene B4 pathway activation and atherosclerosis in obstructive sleep apnea. J Lipid Res 53:1944–1951. https://doi.org/10.1194/jlr.P022814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165:934–939. https://doi.org/10.1164/ajrccm.165.7.2104126

    Article  PubMed  Google Scholar 

  26. Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y (1985) Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol 94(2003):179–184. https://doi.org/10.1152/japplphysiol.00177.2002

    Article  Google Scholar 

  27. Schober A (2008) Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol 28:1950–1959. https://doi.org/10.1161/atvbaha.107.161224

    Article  CAS  PubMed  Google Scholar 

  28. Krohn R, Raffetseder U, Bot I, Zernecke A, Shagdarsuren E, Liehn EA, van Santbrink PJ, Nelson PJ, Biessen EA, Mertens PR, Weber C (2007) Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation 116:1812–1820. https://doi.org/10.1161/circulationaha.107.708016

    Article  CAS  PubMed  Google Scholar 

  29. Ise W, Fujii K, Shiroguchi K, Ito A, Kometani K, Takeda K, Kawakami E, Yamashita K, Suzuki K, Okada T, Kurosaki T (2018) T Follicular Helper Cell-Germinal Center B Cell Interaction Strength Regulates Entry into Plasma Cell or Recycling Germinal Center Cell Fate. Immunity 48:702-715.e704. https://doi.org/10.1016/j.immuni.2018.03.027

    Article  CAS  PubMed  Google Scholar 

  30. Erdozain OJ, Pegrum S, Winrow VR, Horrocks M, Stevens CR (2011) Hypoxia in abdominal aortic aneurysm supports a role for HIF-1α and Ets-1 as drivers of matrix metalloproteinase upregulation in human aortic smooth muscle cells. J Vasc Res 48:163–170. https://doi.org/10.1159/000318806

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Hongliang Yi provided financial support in the form of the National Natural Science Foundation of China [grant numbers 81770988 and 81970869].

Author information

Authors and Affiliations

Authors

Contributions

Chong Xu, Haibo Ye, Jian Guan, and Hongliang Yi designed experiments. Chong Xu and Yupu Liu performed experiments and analyzed data. Xiangyu Cheng and Xiaoting Wang contributed to data collection and data interpretation. Chong Xu, Xiangyu Cheng, and Weijun Huang contributed to protocol development. Chong Xu, Jinhong Shen, and Hongliang Yi prepared the figures and wrote the manuscript.

Corresponding authors

Correspondence to Jinhong Shen or Hongliang Yi.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were carried out following the Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of the Shanghai Jiao Tong University Affiliated Sixth People's Hospital.

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Cheng, X., Wang, X. et al. The immune response to arterial damage in a mouse model of intermittent hypoxia: a transcriptomics analysis. Sleep Breath 27, 2397–2406 (2023). https://doi.org/10.1007/s11325-023-02866-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-023-02866-5

Keywords

Navigation