Skip to main content
Log in

Influence of postural changes on nasal resistance in patients with obstructive sleep apnea

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Objective

Increased nasal resistance (NR) can augment upper airway collapse in patients with obstructive sleep apnea (OSA). Posture change can lead to altered nasal resistance. Our study aimed to investigate the influence of posture changes on NR in patients with OSA.

Methods

Healthy controls without subjective nasal obstruction (apnea–hypopnea index (AHI) < 5 events/h), patients with OSA and subjective nasal obstruction, and patients with OSA and no subjective nasal obstruction were recruited. NR was measured by active anterior rhinomanometry in sitting, supine, left-lateral, and right-lateral postural positions. Total NR and postural change-related NR increments were calculated and compared among groups.

Results

In total, 26 healthy controls and 72 patients with OSA (mean AHI 39.7 ± 24.8 events/h) were recruited. Of patients with OSA, 38/72 (53%) had subjective nasal obstruction. Compared with controls, patients with OSA and no subjective nasal obstruction had lower total NR (inspiration, p = 0.037; expiration, p = 0.020) in the supine postural position. There was no difference in sitting, left-lateral, and right-lateral total NR among groups. Total NR was higher in lateral compared to sitting posture in both patients with OSA and in controls. The NR increment for sitting to supine postural change was significantly lower in patients with OSA (inspiration, p = 0.003; expiration, p = 0.005) compared with controls. The change in NR showed no statistically significant difference among groups in supine-left or supine-right postural change.

Conclusion

Patients with OSA had lower supine total NR and lower total NR increment in the sitting to supine postural change, which may be related to a different posture-related NR regulatory mechanism. This study provides a new exploratory direction for the compensatory mechanism of the upper airway to collapse during sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data underlying this article cannot be shared publicly for the privacy of individuals that participated in the study. The data will be shared on reasonable request to the corresponding authors.

References

  1. Jonas DE, Amick HR, Feltner C, Weber RP, Arvanitis M, Stine A et al (2017) Screening for obstructive sleep apnea in adults. JAMA 317(4):415. https://doi.org/10.1001/jama.2016.19635

    Article  PubMed  Google Scholar 

  2. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7(8):687–698. https://doi.org/10.1016/S2213-2600(19)30198-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Eriksson J, Ekerljung L, Pullerits T, Holmberg K, Rönmark E, Lötvall J et al (2011) Prevalence of chronic nasal symptoms in West Sweden: risk factors and relation to self-reported allergic rhinitis and lower respiratory symptoms. Int Arch Allergy Imm 154(2):155–163. https://doi.org/10.1159/000320230

    Article  Google Scholar 

  4. Värendh M, Andersson M, Bjørnsdottir E, Hrubos-Strøm H, Johannisson A, Arnardottir ES et al (2018) Nocturnal nasal obstruction is frequent and reduces sleep quality in patients with obstructive sleep apnea. J Sleep Res 27(4):e12631. https://doi.org/10.1111/jsr.12631

    Article  PubMed  Google Scholar 

  5. Magliulo G, Iannella G, Ciofalo A, Polimeni A, De Vincentiis M, Pasquariello B et al (2019) Nasal pathologies in patients with obstructive sleep apnoea. Acta Otorhinolaryngo 39(4):250–6. https://doi.org/10.14639/0392-100X-2173

    Article  CAS  Google Scholar 

  6. Sawa A, Suzuki H, Niwa H, Oguchi S, Yagi T, Iwata Y et al (2020) Assessment of screening for nasal obstruction among sleep dentistry outpatients with obstructive sleep apnea. Dentistry J 8(4):119. https://doi.org/10.3390/dj8040119

    Article  Google Scholar 

  7. Ishii L, Godoy A, Ishman SL, Gourin CG, Ishii M (2011) The nasal obstruction symptom evaluation survey as a screening tool for obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 137(2):119

    Article  PubMed  Google Scholar 

  8. Chirakalwasan N, Ruxrungtham K (2014) The linkage of allergic rhinitis and obstructive sleep apnea. Asian Pac J Allergy 32(4):276–286

    Google Scholar 

  9. Lebret M, Arnol N, Martinot J, Tamisier R, Deschaux C, Pépin J et al (2018) Nasal obstruction symptom evaluation score to guide mask selection in CPAP-treated obstructive sleep apnea. Otolaryngology-Head Neck Surg 159(3):590–592. https://doi.org/10.1177/0194599818773993

    Article  Google Scholar 

  10. Inoue A, Chiba S, Matsuura K, Osafune H, Capasso R, Wada K (2019) Nasal function and CPAP compliance. Auris Nasus Larynx 46(4):548–558. https://doi.org/10.1016/j.anl.2018.11.006

    Article  PubMed  Google Scholar 

  11. Georgalas C (2011) The role of the nose in snoring and obstructive sleep apnoea: an update. Eur Arch Oto-Rhino-L 268(9):1365–1373. https://doi.org/10.1007/s00405-010-1469-7

    Article  Google Scholar 

  12. Atkins M, Taskar V, Clayton N, Stone P, Woodcock A (1994) Nasal resistance in obstructive sleep apnea. Chest 105(4):1133–1135. https://doi.org/10.1378/chest.105.4.1133

    Article  CAS  PubMed  Google Scholar 

  13. Tong BK, Tran C, Ricciardiello A, Chiang A, Donegan M, Murray N et al (2020) Efficacy of a novel oral appliance and the role of posture on nasal resistance in obstructive sleep apnea. J Clin Sleep Med 16(4):483–492. https://doi.org/10.5664/jcsm.8244

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ishii L, Roxbury C, Godoy A, Ishman S, Ishii M (2015) Does nasal surgery improve OSA in patients with nasal obstruction and OSA? A Meta-analysis Otolaryngology-Head and Neck Surgery 153(3):326–333. https://doi.org/10.1177/0194599815594374

    Article  PubMed  Google Scholar 

  15. Young T, Finn L, Kim H, University OWSA (1997) Nasal obstruction as a risk factor for sleep-disordered breathing. J Allergy Clin Immun 99(2):S757–S762. https://doi.org/10.1016/S0091-6749(97)70124-6

    Article  CAS  PubMed  Google Scholar 

  16. Blakley BW, Mahowald MW (1987) Nasal resistance and sleep apnea. Laryngoscope 97(6):752–754. https://doi.org/10.1288/00005537-198706000-00023

    Article  CAS  PubMed  Google Scholar 

  17. Lofaso F, Coste A, D’Ortho MP, Zerah-Lancner F, Delclaux C, Goldenberg F et al (2000) Nasal obstruction as a risk factor for sleep apnoea syndrome. Eur Respir J 16(4):639–643. https://doi.org/10.1034/j.1399-3003.2000.16d12.x

    Article  CAS  PubMed  Google Scholar 

  18. Rundcrantz H (1969) Postural variations of nasal patency. Acta Oto-Laryngol 68(5):435

    Article  CAS  Google Scholar 

  19. Hellgren J, Yee BJ, Dungan G, Grunstein RR (2009) Altered positional regulation of nasal patency in patients with obstructive sleep apnoea syndrome. Eur Arch Oto-Rhino-L 266(1):83–87. https://doi.org/10.1007/s00405-008-0701-1

    Article  Google Scholar 

  20. Virkkula P, Maasilta P, Hytönen M, Salmi T, Malmberg H (2009) Nasal obstruction and sleep-disordered breathing: the effect of supine body position on nasal measurements in snorers. Acta Oto-Laryngol 123(5):648–654. https://doi.org/10.1080/00016480310001493

    Article  Google Scholar 

  21. Huang CC, Cheng PW, Liao LJ, Huang TW (2021) Reduction of postural nasal resistance following oropharyngeal surgery in patients with moderate-severe obstructive sleep apnea. Rhinology 59(1):75–80. https://doi.org/10.4193/Rhin19.331

    Article  PubMed  Google Scholar 

  22. Masdeu MJ, Seelall V, Patel AV, Ayappa I, Rapoport DM (2011) Awake measures of nasal resistance and upper airway resistance on CPAP during sleep. J Clin Sleep Med 7(1):31–40. https://doi.org/10.5664/jcsm.28039

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dong D, Zhao Y, Stewart MG, Sun L, Cheng H, Wang J et al (2014) Development of the Chinese nasal obstruction symptom evaluation (NOSE) questionnaire. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 49(1):20–26

    PubMed  Google Scholar 

  24. Stewart MG, Witsell DL, Smith TL, Weaver EM, Yueh B, Hannley MT (2016) Development and validation of the nasal obstruction symptom evaluation (NOSE) scale. Otolaryngology-Head and Neck Surgery 130(2):157–163. https://doi.org/10.1016/j.otohns.2003.09.016

    Article  Google Scholar 

  25. Lipan MJ, Most SP (2013) Development of a severity classification system for subjective nasal obstruction. Jama Facial Plast Su 15(5):358

    Article  Google Scholar 

  26. Keeler J, Most SP (2016) Measuring nasal obstruction. Facial Plast Surg Clin North Am 24(3):315–322. https://doi.org/10.1016/j.fsc.2016.03.008

    Article  PubMed  Google Scholar 

  27. Pallanch JF, McCaffrey TV, Kern EB (1985) Normal nasal resistance. Otolaryngol Head Neck Surg 93(6):778–785. https://doi.org/10.1177/019459988509300616

    Article  CAS  PubMed  Google Scholar 

  28. Desfonds P, Planes C, Fuhrman C, Foucher A, Raffestin B (1998) Nasal resistance in snorers with or without sleep apnea : effect of posture and nasal ventilation with continuous positive airway pressure. Sleep (New York, N.Y.) 21(6):625–32. https://doi.org/10.1093/sleep/21.6.625

    Article  CAS  Google Scholar 

  29. Riechelmann R, Krause W (1994) Autonomic regulation of nasal vessels during changes in body position. Eur Arch Oto-Rhino-L 251(4):210–213. https://doi.org/10.1007/BF00628425

    Article  CAS  Google Scholar 

  30. Babatola FD (1998) Reciprocal changes in nasal resistance in response to changes in posture. Rhinology 36(2):69–72

    CAS  PubMed  Google Scholar 

  31. Murat K (2018) The importance of posture and gravity in the pathophysiology of obstructive sleep apnea “because of an elephantiasis case with sleep disordered breathing.” Int J Respir Pulm Med. 5(2). https://doi.org/10.23937/2378-3516/1410096

  32. Ko JH, Kuo TB, Lee GS (2008) Effect of postural change on nasal airway and autonomic nervous system established by rhinomanometry and heart rate variability analysis. Am J Rhinol 22(2):159–165. https://doi.org/10.2500/ajr.2008.22.3143

    Article  PubMed  Google Scholar 

  33. Gainche L, Berlowitz DJ, LeGuen M, Ruehland WR, O’Donoghue FJ, Trinder J et al (2016) Nasal resistance is elevated in people with tetraplegia and is reduced by topical sympathomimetic administration. J Clin Sleep Med 12(11):1487–1492. https://doi.org/10.5664/jcsm.6272

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wijesuriya NS, Lewis C, Butler JE, Lee BB, Jordan AS, Berlowitz DJ et al (2017) High nasal resistance is stable over time but poorly perceived in people with tetraplegia and obstructive sleep apnoea. Respir Physiol Neurobiol 235:27–33. https://doi.org/10.1016/j.resp.2016.09.014

    Article  PubMed  Google Scholar 

  35. Lyu B, Hagen EW, Ravelo LA, Peppard PE (2020) Blood pressure dipping and sleep quality in the Wisconsin Sleep Cohort. J Hypertens 38(3):448–455. https://doi.org/10.1097/HJH.0000000000002283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor KS, Millar PJ, Murai H, Haruki N, Kimmerly DS, Bradley TD, et al. (2018) Cortical autonomic network gray matter and sympathetic nerve activity in obstructive sleep apnea. Sleep 41(2): https://doi.org/10.1093/sleep/zsx208

  37. Floras JS (2016) Sympathetic nervous system in patients with sleep related breathing disorders. Curr Hypertens Rev 12(1):18

    Article  PubMed  Google Scholar 

  38. Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin BG (1993) Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest 103(6):1763–1768. https://doi.org/10.1378/chest.103.6.1763

    Article  CAS  PubMed  Google Scholar 

  39. McNicholas WT (2008) The nose and OSA: variable nasal obstruction may be more important in pathophysiology than fixed obstruction. Eur Respir J 32(1):3–8. https://doi.org/10.1183/09031936.00050208

    Article  CAS  PubMed  Google Scholar 

  40. Karlsson A, Persson M, Mjörnheim A, Gudnadottir G, Hellgren J (2020) Total nasal airway resistance while sitting predicts airway collapse when lying down. J Laryngol Otol 134(10):917–924. https://doi.org/10.1017/S0022215120002194

    Article  Google Scholar 

  41. De Vito A, Berrettini S, Carabelli A, Sellari-Franceschini S, Bonanni E, Gori S et al (2001) The importance of nasal resistance in obstructive sleep apnea syndrome: a study with positional rhinomanometry. Sleep Breath 5(1):3–11. https://doi.org/10.1007/s11325-001-0003-y

    Article  PubMed  Google Scholar 

  42. Virkkula P, Hurmerinta K, Loytonen M, Salmi T, Malmberg H, Maasilta P (2003) Postural cephalometric analysis and nasal resistance in sleep-disordered breathing. Laryngoscope 113(7):1166–1174. https://doi.org/10.1097/00005537-200307000-00012

    Article  PubMed  Google Scholar 

  43. Cole P, Haight JS (1984) Posture and nasal patency. Am Rev Respir Dis 129(3):351–354. https://doi.org/10.1164/arrd.1984.129.3.351

    Article  CAS  PubMed  Google Scholar 

  44. Mohan SM (1991) Reversal of nostril dominance by posture. J Indian Med Assoc 89(4):88–91

    CAS  PubMed  Google Scholar 

  45. Davies AM, Eccles R (1985) Reciprocal changes in nasal resistance to airflow caused by pressure applied to the axilla. Acta Oto-Laryngol 99(1–2):154

    Article  CAS  Google Scholar 

  46. Haight JS, Cole P (1986) Unilateral nasal resistance and asymmetrical body pressure. J Otolaryngol Suppl 16:1–31

    CAS  PubMed  Google Scholar 

  47. Nguyen DK, Liang J, Durr M (2021) Topical nasal treatment efficacy on adult obstructive sleep apnea severity: a systematic review and meta-analysis. Int Forum Allergy Rhinol 11(2):153–161. https://doi.org/10.1002/alr.22658

    Article  PubMed  Google Scholar 

  48. Hsu YB, Liu SYC, Lan MY, Huang YC, Tzeng IS, Lan MC (2020) Role of rhinomanometry in the prediction of therapeutic positive airway pressure for obstructive sleep apnea. Respir Res 21(1):115. https://doi.org/10.1186/s12931-020-01382-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (81970866), and the Beijing Municipal Administration of Hospitals’ Youth Programme (grant number QMS20190202). The sponsor had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanru Li or Demin Han.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

All authors have seen and approved this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Lou, H., Wang, H. et al. Influence of postural changes on nasal resistance in patients with obstructive sleep apnea. Sleep Breath 27, 943–952 (2023). https://doi.org/10.1007/s11325-022-02685-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-022-02685-0

Keywords

Navigation