Skip to main content

Advertisement

Log in

Mandibular advancement device therapy in patients with epiglottic collapse

  • Sleep Breathing Physiology and Disorders • Short Communication
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Epiglottic collapse is a specific sleep-endoscopic finding that can prove challenging to treat in patients with obstructive sleep apnea (OSA). Its effect on mandibular advancement devices (MAD) remains largely unknown. Therefore, this study assessed whether or not epiglottic collapse affects treatment outcome with MAD.

Methods

Patients with diagnosed OSAD underwent drug-induced sleep endoscopy (DISE) and were treated with a titratable MAD. Two age- and gender-matched controls were selected for every subject with primary epiglottic collapse (i.e., complete closure without involvement of other upper airway structures). Treatment response was defined as a reduction in oxygen desaturation index (ODI) of ≥ 50% following MAD therapy.

Results

Of 101 patients who underwent DISE, twenty (20%) showed primary epiglottic collapse (mean [SD]: 17 men; age 49.8 [10.1]; body mass index 28.3 [2.9] kg/m2; apnea-hypopnea index 27.0 [16.9] events/h). There were no significant differences in baseline clinical characteristics between cases and controls. MAD therapy was equally effective in patients with and without epiglottic collapse (mean [SD]; ODI with MAD, 8.7 [7.7] events/h vs. 7.8 [7.5] events/h, P = .62; ΔODI, 53.3 [29.6]% vs. 50.6 [37.7]%, P = .82; responder status, 10/20 vs. 22/40, P = .79). Logistic regression analysis revealed no associations between epiglottic collapse and treatment outcome.

Conclusion

The presence of epiglottic collapse during DISE does not impair the effectiveness of MAD. Therefore, MAD therapy should be considered in patients with predominant epiglottic collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Ethical approval was waived by the ethics committee at the University of Antwerp and Antwerp University Hospital. Informed consent was obtained from all individual participants included in the study.

References

  1. Ramar K, Dort LC, Katz SG, Lettieri CJ, Harrod CG, Thomas SM et al (2015) Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med 11(7):773–827

    Article  PubMed  PubMed Central  Google Scholar 

  2. Phillips CL, Grunstein RR, Darendeliler MA, Mihailidou AS, Srinivasan VK, Yee BJ et al (2013) Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med 187(8):879–887

    Article  PubMed  Google Scholar 

  3. Vanderveken OM, Devolder A, Marklund M, Boudewyns AN, Braem MJ, Okkerse W et al (2008) Comparison of a custom-made and a thermoplastic oral appliance for the treatment of mild sleep apnea. Am J Respir Crit Care Med 178(2):197–202

    Article  PubMed  Google Scholar 

  4. Dieltjens M, Vanderveken OM, Hamans E, Verbraecken JA, Wouters K, Willemen M et al (2013) Treatment of obstructive sleep apnea using a custom-made titratable duobloc oral appliance: a prospective clinical study. Sleep Breath 17(2):565–572

    Article  CAS  PubMed  Google Scholar 

  5. Bratton DJ, Gaisl T, Wons AM, Kohler M (2015) CPAP vs mandibular advancement devices and blood pressure in patients with obstructive sleep apnea: a systematic review and meta-analysis. JAMA 314(21):2280–2293

    Article  CAS  PubMed  Google Scholar 

  6. Bratton DJ, Gaisl T, Schlatzer C, Kohler M (2015) Comparison of the effects of continuous positive airway pressure and mandibular advancement devices on sleepiness in patients with obstructive sleep apnoea: a network meta-analysis. Lancet Respir Med 3(11):869–878

    Article  PubMed  Google Scholar 

  7. Schwartz M, Acosta L, Hung YL, Padilla M, Enciso R (2018) Effects of CPAP and mandibular advancement device treatment in obstructive sleep apnea patients: a systematic review and meta-analysis. Sleep Breath 22(3):555–568

    Article  PubMed  Google Scholar 

  8. Sutherland K, Vanderveken OM, Tsuda H, Marklund M, Gagnadoux F, Kushida CA et al (2014) Oral appliance treatment for obstructive sleep apnea: an update. J Clin Sleep Med 10(2):215–227

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chan AS, Sutherland K, Schwab RJ, Zeng B, Petocz P, Lee RW et al (2010) The effect of mandibular advancement on upper airway structure in obstructive sleep apnoea. Thorax 65(8):726–732

    Article  PubMed  Google Scholar 

  10. Edwards BA, Andara C, Landry S, Sands SA, Joosten SA, Owens RL et al (2016) Upper-airway collapsibility and loop gain predict the response to oral appliance therapy in patients with obstructive sleep apnea. Am J Respir Crit Care Med 194(11):1413–1422

    Article  PubMed  PubMed Central  Google Scholar 

  11. Op de Beeck S, Dieltjens M, Verbruggen AE, Vroegop AV, Wouters K, Hamans E, et al. Phenotypic labelling using drug-induced sleep endoscopy improves patient selection for mandibular advancement device outcome: a prospective study. J Clin Sleep Med. 2019;15(8):1089–99.

  12. Marques M, Genta PR, Azarbarzin A, Taranto-Montemurro L, Messineo L, Hess LB et al (2019) Structure and severity of pharyngeal obstruction determine oral appliance efficacy in sleep apnoea. J Physiol 597(22):5399–5410

    Article  CAS  PubMed  Google Scholar 

  13. Ravesloot MJ, de Vries N (2011) One hundred consecutive patients undergoing drug-induced sleep endoscopy: results and evaluation. Laryngoscope 121(12):2710–2716

    Article  PubMed  Google Scholar 

  14. Lan MC, Liu SY, Lan MY, Modi R, Capasso R (2015) Lateral pharyngeal wall collapse associated with hypoxemia in obstructive sleep apnea. Laryngoscope 125(10):2408–2412

    Article  CAS  PubMed  Google Scholar 

  15. Andersen AP, Alving J, Lildholdt T, Wulff CH. Obstructive sleep apnea initiated by a lax epiglottis. A contraindication for continuous positive airway pressure. Chest. 1987;91(4):621–3.

  16. Verse T, Pirsig W (1999) Age-related changes in the epiglottis causing failure of nasal continuous positive airway pressure therapy. J Laryngol Otol 113(11):1022–1025

    Article  CAS  PubMed  Google Scholar 

  17. Vroegop AV, Vanderveken OM, Wouters K, Hamans E, Dieltjens M, Michels NR et al (2013) Observer variation in drug-induced sleep endoscopy: experienced versus nonexperienced ear, nose, and throat surgeons. Sleep 36(6):947–953

    Article  PubMed  PubMed Central  Google Scholar 

  18. Azarbarzin A, Marques M, Sands SA, Op de Beeck S, Genta PR, Taranto-Montemurro L, et al. Predicting epiglottic collapse in patients with obstructive sleep apnoea. Eur Respir J. 2017;50(3).

  19. Marques M, Genta PR, Sands SA, Azarbazin A, de Melo C, Taranto-Montemurro L, et al. Effect of sleeping position on upper airway patency in obstructive sleep apnea is determined by the pharyngeal structure causing collapse. Sleep. 2017;40(3).

  20. Safiruddin F, Koutsourelakis I, de Vries N (2014) Analysis of the influence of head rotation during drug-induced sleep endoscopy in obstructive sleep apnea. Laryngoscope 124(9):2195–2199

    Article  PubMed  Google Scholar 

  21. Arora A, Chaidas K, Garas G, Amlani A, Darzi A, Kotecha B et al (2016) Outcome of TORS to tongue base and epiglottis in patients with OSA intolerant of conventional treatment. Sleep Breath 20(2):739–747

    Article  PubMed  Google Scholar 

  22. Kent DT, Rogers R, Soose RJ (2015) Drug-induced sedation endoscopy in the evaluation of OSA patients with incomplete oral appliance therapy response. Otolaryngol Head Neck Surg 153(2):302–307

    Article  PubMed  Google Scholar 

  23. Op de Beeck S, Van de Perck E, Vena D, Kazemeini E, Dieltjens M, Willemen M, et al. Flow identified site of collapse during drug-induced sleep endoscopy: feasibility and preliminary results. Chest. 2020.

  24. Vena D, Azarbarzin A, Marques M, Op de Beeck S, Vanderveken OM, Edwards BA, et al. Predicting sleep apnea responses to oral appliance therapy using polysomnographic airflow. Sleep. 2020.

  25. Battagel JM, Johal A, L’Estrange PR, Croft CB, Kotecha B (1999) Changes in airway and hyoid position in response to mandibular protrusion in subjects with obstructive sleep apnoea (OSA). Eur J Orthod 21(4):363–376

    Article  CAS  PubMed  Google Scholar 

  26. Brown EC, Cheng S, McKenzie DK, Butler JE, Gandevia SC, Bilston LE (2013) Tongue and lateral upper airway movement with mandibular advancement. Sleep 36(3):397–404

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kwon OE, Jung SY, Al-Dilaijan K, Min JY, Lee KH, Kim SW (2019) Is epiglottis surgery necessary for obstructive sleep apnea patients with epiglottis obstruction? Laryngoscope 129(11):2658–2662

    Article  PubMed  Google Scholar 

  28. Torre C, Camacho M, Liu SY, Huon LK, Capasso R (2016) Epiglottis collapse in adult obstructive sleep apnea: a systematic review. Laryngoscope 126(2):515–523

    Article  PubMed  Google Scholar 

  29. Escourrou P, Grote L, Penzel T, McNicholas WT, Verbraecken J, Tkacova R et al (2015) The diagnostic method has a strong influence on classification of obstructive sleep apnea. J Sleep Res 24(6):730–738

    Article  PubMed  Google Scholar 

  30. Kezirian EJ, White DP, Malhotra A, Ma W, McCulloch CE, Goldberg AN (2010) Interrater reliability of drug-induced sleep endoscopy. Arch Otolaryngol Head Neck Surg 136(4):393–397

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Dr. Van de Perck and Dr. Vanderveken; methodology: Dr. Van de Perck, Dr. Dieltjens, and Dr. Vanderveken; data collection: Dr. Van de Perck, Dr. Vroegop, and Dr. Braem; formal analysis and investigation: Dr. Van de Perck; writing—original draft preparation: Dr. Van de Perck; writing—review and editing: all authors; supervision: Dr. Vanderveken.

Corresponding author

Correspondence to Eli Van de Perck.

Ethics declarations

Consent to participate and consent to publish

Not applicable.

Conflict of interest

Dr. Van de Perck and Dr. Vroegop have no competing interests to declare. Dr. Dieltjens holds a Senior Postdoctoral Fellowship from the Research Foundation Flanders (FWO: 12H4520N). Dr. Verbraecken reports grants from SomnoMed, AirLiquide, Vivisol, Mediq Tefa, Medidis, OSG, Philips, and Resmed, outside the submitted work. Dr. Braem reports grants from SomnoMed outside the submitted work. Dr. Vanderveken holds a Senior Clinical Investigator Fellowship from the Research Foundation Flanders (FWO: 1833517 N), and reports grants and personal fees from SomnoMed, grants and non-financial support from Philips, personal fees and other from Inspire, and other from Nyxoah, outside the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Perck, E., Dieltjens, M., Vroegop, A.V. et al. Mandibular advancement device therapy in patients with epiglottic collapse. Sleep Breath 26, 1915–1920 (2022). https://doi.org/10.1007/s11325-021-02532-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-021-02532-8

Keywords

Navigation