Skip to main content

Advertisement

Log in

Globular adiponectin protects hepatocytes against intermittent hypoxia-induced injury via Pink1/Parkin-mediated mitophagy induction

  • Basic Science • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

This study sought to determine the effect of Pink1/Parkin-mediated mitophagy on liver cells exposed to intermittent hypoxia (IH) and the roles of globular adiponectin (gAPN).

Methods

The hepatocyte model of IH was established. Cell apoptosis was assessed using flow cytometry. Mitochondrial membrane potential (MMP) level was determined using JC-1, and mitophagy was assessed using a confocal laser. Mitochondrial injury associated protein levels of bax and bcl-2, and protein levels of Pink1 and Parkin were evaluated via western blotting. We downregulated Parkin expression by transfecting the cells with Parkin siRNA.

Results

Pink1 and Parkin protein levels, mitophagy, and cell apoptosis rate were high, while the MMP level and protein level ratio of bcl-2/bax were low in IH-treated hepatocyte. gAPN upregulated Pink1 and Parkin protein levels, MMP level, protein level ratio of bcl-2/bax, and mitophagy while it reduced the rate of cell apoptosis in IH-treated hepatocytes. Inhibiting Parkin expression significantly reduced mitophagy and increased mitochondrial injury and the rate of hepatocyte apoptosis under IH or IH with gAPN.

Conclusion

gAPN alleviated IH-induced mitochondrial injury and hepatocyte apoptosis by upregulating Pink1/Parkin-mediated mitophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Mesarwi OA, Loomba R, Malhotra A (2019) Obstructive sleep apnea, hypoxia, and nonalcoholic fatty liver disease. Am J Respir Crit Care Med 199(7):830–841. https://doi.org/10.1164/rccm.201806-1109TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ding W, Zhang Q, Dong Y, Ding N, Huang H, Zhu X, Hutchinson S, Gao X, Zhang X (2016) Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway. Sci Rep 6:34151. https://doi.org/10.1038/srep34151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20(9):1013–1022. https://doi.org/10.1038/s41556-018-0176-2

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Liu N, Lu B (2019) Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci Ther 25(7):859–875. https://doi.org/10.1111/cns.13140

    Article  PubMed  PubMed Central  Google Scholar 

  5. Springer MZ, Macleod KF (2016) In Brief: Mitophagy: mechanisms and role in human disease. J Pathol 240 (3):253–255. https://doi.org/10.1002/path.4774

  6. Zhou H, He L, Xu G, Chen L (2020) Mitophagy in cardiovascular disease. Clin Chim Acta 507:210–218. https://doi.org/10.1016/j.cca.2020.04.033

  7. Ren Y, Li Y, Yan J, Ma M, Zhou D, Xue Z, Zhang Z, Liu H, Yang H, Jia L, Zhang L, Zhang Q, Mu S, Zhang R, Da Y (2017) Adiponectin modulates oxidative stress-induced mitophagy and protects C2C12 myoblasts against apoptosis. Sci Rep 7(1):3209. https://doi.org/10.1038/s41598-017-03319-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Urbina-Varela R, Castillo N, Videla LA, Del Campo A (2020) Impact of mitophagy and mitochondrial unfolded protein response as new adaptive mechanisms underlying old pathologies: sarcopenia and non-alcoholic fatty liver disease. Int J Mol Sci 21 (20). https://doi.org/10.3390/ijms21207704

  9. Williams JA, Ni HM, Ding Y, Ding WX (2015) Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice. Am J Physiol Gastrointest Liver Physiol 309(5):G324-340. https://doi.org/10.1152/ajpgi.00108.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fasshauer M, Bluher M (2015) Adipokines in health and disease. Trends Pharmacol Sci 36(7):461–470. https://doi.org/10.1016/j.tips.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  11. Kim Y, Cho JY, Oh SW, Kang M, Lee SE, Jung E, Park YS, Lee J (2018) Globular adiponectin acts as a melanogenic signal in human epidermal melanocytes. Br J Dermatol 179(3):689–701. https://doi.org/10.1111/bjd.16488

    Article  CAS  PubMed  Google Scholar 

  12. Burkus J, Navarrete Santos A, Schindler M, Babelova J, Jung JS, Spirkova A, Ksinanova M, Kovarikova V, Fischer B, Koppel J, Fabian D, Cikos S (2020) Adiponectin stimulates glucose uptake in mouse blastocysts and embryonic carcinoma cells. Reproduction 159(3):227–239. https://doi.org/10.1530/REP-19-0251

    Article  CAS  PubMed  Google Scholar 

  13. Bang S, Won KH, Moon HR, Yoo H, Hong A, Song Y, Chang SE (2017) Novel regulation of melanogenesis by adiponectin via the AMPK/CRTC pathway. Pigment Cell Melanoma Res 30(6):553–557. https://doi.org/10.1111/pcmr.12596

    Article  CAS  PubMed  Google Scholar 

  14. Al Mutairi S, Mojiminiyi OA, Al Alawi A, Al Rammah T, Abdella N (2014) Study of leptin and adiponectin as disease markers in subjects with obstructive sleep apnea. Dis Markers 2014:706314. https://doi.org/10.1155/2014/706314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Q, Zhang X, Ding N, Ge L, Dong Y, He C, Ding W (2020) Globular adiponectin alleviates chronic intermittent hypoxia-induced H9C2 cardiomyocytes apoptosis via ER-phagy induction. Cell Cycle 19(22):3140–3153. https://doi.org/10.1080/15384101.2020.1836438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazzotti DR, Keenan BT, Lim DC, Gottlieb DJ, Kim J, Pack AI (2019) Symptom subtypes of obstructive sleep apnea predict incidence of cardiovascular outcomes. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201808-1509OC

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sundaram SS, Halbower AC, Klawitter J, Pan Z, Robbins K, Capocelli KE, Sokol RJ (2018) Treating obstructive sleep apnea and chronic intermittent hypoxia improves the severity of nonalcoholic fatty liver disease in children. J Pediatr 198(67–75):e61. https://doi.org/10.1016/j.jpeds.2018.03.028

    Article  Google Scholar 

  18. Parikh MP, Gupta NM, McCullough AJ (2019) Obstructive sleep apnea and the liver. Clin Liver Dis 23(2):363–382. https://doi.org/10.1016/j.cld.2019.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu W, Li W, Wei J, Wang C, Yao Y, Zhu W, He W, Zhou W, Liu J (2019) Chronic intermittent hypoxia accelerates liver fibrosis in rats with combined hypoxia and nonalcoholic steatohepatitis via angiogenesis rather than endoplasmic reticulum stress. Acta Biochim Biophys Sin (Shanghai) 51(2):159–167. https://doi.org/10.1093/abbs/gmy169

    Article  CAS  Google Scholar 

  20. Ren J, Jin M, You ZX, Luo M, Han Y, Li GC, Liu HG (2019) Melatonin prevents chronic intermittent hypoxia-induced injury by inducing sirtuin 1-mediated autophagy in steatotic liver of mice. Sleep Breath 23(3):825–836. https://doi.org/10.1007/s11325-018-1741-4

    Article  PubMed  Google Scholar 

  21. Saito T, Sadoshima J (2015) Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res 116(8):1477–1490. https://doi.org/10.1161/CIRCRESAHA.116.303790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fan P, Xie XH, Chen CH, Peng X, Zhang P, Yang C, Wang YT (2019) Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy. DNA Cell Biol 38(1):10–22. https://doi.org/10.1089/dna.2018.4348

    Article  CAS  PubMed  Google Scholar 

  23. Munir KM, Quon MJ (2013) Distinct mechanisms for globular adiponectin that integrate vascular and metabolic actions of insulin to help maintain coordinated cardiovascular and glucose homeostasis. Circ Res 112(9):1205–1207. https://doi.org/10.1161/CIRCRESAHA.113.301316

    Article  CAS  PubMed  Google Scholar 

  24. Song W, Huo T, Guo F, Wang H, Wei H, Yang Q, Dong H, Wang Q, Xiong L (2013) Globular adiponectin elicits neuroprotection by inhibiting NADPH oxidase-mediated oxidative damage in ischemic stroke. Neuroscience 248:136–144. https://doi.org/10.1016/j.neuroscience.2013.05.063

    Article  CAS  PubMed  Google Scholar 

  25. Ma H, Cui F, Dong JJ, You GP, Yang XJ, Lu HD, Huang YL (2014) Therapeutic effects of globular adiponectin in diabetic rats with nonalcoholic fatty liver disease. World J Gastroenterol: WJG 20(40):14950–14957. https://doi.org/10.3748/wjg.v20.i40.14950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fisman EZ, Tenenbaum A (2014) Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 13:103. https://doi.org/10.1186/1475-2840-13-103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim EH, Park PH (2018) Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: critical role of autophagy induction. Biochem Pharmacol 154:278–292. https://doi.org/10.1016/j.bcp.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  28. Khakurel A, Park PH (2018) Globular adiponectin protects hepatocytes from tunicamycin-induced cell death via modulation of the inflammasome and heme oxygenase-1 induction. Pharmacol Res 128:231–243. https://doi.org/10.1016/j.phrs.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  29. Eid N, Ito Y, Horibe A, Otsuki Y (2016) Ethanol-induced mitophagy in liver is associated with activation of the PINK1-Parkin pathway triggered by oxidative DNA damage. Histol Histopathol 31(10):1143–1159. https://doi.org/10.14670/HH-11-747

    Article  CAS  PubMed  Google Scholar 

  30. Kim HJ, Joe Y, Rah SY, Kim SK, Park SU, Park J, Kim J, Ryu J, Cho GJ, Surh YJ, Ryter SW, Kim UH, Chung HT (2018) Carbon monoxide-induced TFEB nuclear translocation enhances mitophagy/mitochondrial biogenesis in hepatocytes and ameliorates inflammatory liver injury. Cell Death Dis 9(11):1060. https://doi.org/10.1038/s41419-018-1112-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo C, Zhang Y, Guo H, Han X, Ren J, Liu J (2020) Ferulic acid attenuates hypoxia/reoxygenation injury by suppressing mitophagy through the PINK1/Parkin signaling pathway in H9c2 cells. Front Pharmacol 11:103. https://doi.org/10.3389/fphar.2020.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang W, Ding W, Huang H, Zhu Y, Ding N, Feng G, Zhang X (2020) The role of mitophagy in the mechanism of genioglossal dysfunction caused by chronic intermittent hypoxia and the protective effect of adiponectin. Sleep Breath. https://doi.org/10.1007/s11325-020-02211-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 81770086 and 81700090).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Xilong Zhang, Yanbin Dong, and Wenxiao Ding. Methodology, Xilong Zhang, Yanbin Dong, and Wenxiao Ding. Formal analysis and investigation, Xilong Xhang, Yanbin Dong, and Wenxiao Ding. Writing — original draft preparation, Xilong Zhang, Yanbin Dong, and Wenxiao Ding. Writing — review and editing, Xiong Zhang and Wenxiao Ding. Funding acquisition, Xilong Zhang and Wenxiao Ding. Resources, Xilong Zhang, Yanbin Dong, and Wenxiao Ding. Supervision, Xilong Zhang.

Corresponding author

Correspondence to Xilong Zhang.

Ethics declarations

Ethics approval

The manuscript does not contain clinical studies or patient data or animal date.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Dong, Y. & Zhang, X. Globular adiponectin protects hepatocytes against intermittent hypoxia-induced injury via Pink1/Parkin-mediated mitophagy induction. Sleep Breath 26, 1389–1397 (2022). https://doi.org/10.1007/s11325-021-02508-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-021-02508-8

Keywords

Navigation