Skip to main content

Advertisement

Log in

Polymorphonuclear neutrophils promote endothelial apoptosis by enhancing adhesion upon stimulation by intermittent hypoxia

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

This study explored the interactive effects between polymorphonuclear neutrophils (PMNs) and vascular endothelial cells under intermittent hypoxia (IH) and investigated the mechanisms underlying these effects.

Methods

Endothelial cells were co-cultured with PMNs isolated from rats exposed to normoxia or IH. The PMN apoptotic rate was determined using flow cytometry. Expression of apoptosis-related proteins in the endothelial cells were evaluated using Western blotting, and the levels of intercellular adhesion molecules in the co-culture supernatants were measured using enzyme-linked immunosorbent assay.

Results

The PMN apoptotic rate in the IH-exposed rat group was significantly lower than that of the normoxia control group. There was a positive relationship between the PMN apoptotic rate and IH exposure time. In endothelial cells co-cultured with PMNs isolated from IH-exposed rats, a significant increase in the protein expression levels of Bax, Bcl-2, and caspase-3 and a significant decrease in the Bcl-2/Bax ratio were observed. Furthermore, the intercellular cell adhesion molecule-1(ICAM-1) and E-select element (E-S) levels were elevated significantly in the co-cultured supernatants of endothelial cells and PMNs from IH-exposed rats compared to that from controls. The above IH-induced alterations were partially restored by tempol pretreatment.

Conclusions

The apoptotic rate was low in PMNs from IH-exposed rats, which consequently increased the apoptotic signals in endothelial cells in vitro. This may be associated with the increased levels of intercellular adhesion molecules. Further, tempol partially attenuates the PMN-mediated pro-apoptotic effects on endothelial cells under IH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pépin J-L, Peppard PE, Sinha S, Tufik S, Valentine K, Malhotra A (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Resp Med 7(8):687–698. https://doi.org/10.1016/s2213-2600(19)30198-5

    Article  Google Scholar 

  2. Garvey JF, Taylor CT, McNicholas WT (2009) Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J 33(5):1195–1205. https://doi.org/10.1183/09031936.00111208

    Article  CAS  PubMed  Google Scholar 

  3. Arnaud C, Bochaton T, Pepin JL, Belaidi E (2020) Obstructive sleep apnoea and cardiovascular consequences: pathophysiological mechanisms. Arch Cardiovasc Dis 113(5):350–358. https://doi.org/10.1016/j.acvd.2020.01.003

    Article  PubMed  Google Scholar 

  4. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, Malhotra A, Martinez-Garcia MA, Mehra R, Pack AI, Polotsky VY, Redline S, Somers VK (2017) Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol 69(7):841–858. https://doi.org/10.1016/j.jacc.2016.11.069

    Article  PubMed  PubMed Central  Google Scholar 

  5. Badran M, Golbidi S, Devlin A, Ayas N, Laher I (2014) Chronic intermittent hypoxia causes endothelial dysfunction in a mouse model of diet-induced obesity. Sleep Med 15(5):596–602. https://doi.org/10.1016/j.sleep.2014.01.013

    Article  PubMed  Google Scholar 

  6. Levy P, Kohler M, McNicholas WT, Barbe F, McEvoy RD, Somers VK, Lavie L, Pepin JL (2015) Obstructive sleep apnoea syndrome. Nat Rev Dis Primers 1:15015. https://doi.org/10.1038/nrdp.2015.15

    Article  PubMed  Google Scholar 

  7. Guo H, Cao J, Li J, Yang X, Jiang J, Feng J, Li S, Zhang J, Chen B (2015) Lymphocytes from intermittent hypoxia-exposed rats increase the apoptotic signals in endothelial cells via oxidative and inflammatory injury in vitro. Sleep Breath 19(3):969–976. https://doi.org/10.1007/s11325-015-1128-8

    Article  PubMed  Google Scholar 

  8. Williams MR, Azcutia V, Newton G, Alcaide P, Luscinskas FW (2011) Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol 32(10):461–469. https://doi.org/10.1016/j.it.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dyugovskaya L, Polyakov A, Lavie P, Lavie L (2008) Delayed neutrophil apoptosis in patients with sleep apnea. Am J Respir Crit Care Med 177(5):544–554. https://doi.org/10.1164/rccm.200705-675OC

    Article  CAS  PubMed  Google Scholar 

  10. Naruko T, Ueda M, Haze K, van der Wal AC, van der Loos CM, Itoh A, Komatsu R, Ikura Y, Ogami M, Shimada Y, Ehara S, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE (2002) Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 106(23):2894–2900. https://doi.org/10.1161/01.cir.0000042674.89762.20

    Article  PubMed  Google Scholar 

  11. Zidar N, Jeruc J, Balazic J, Stajer D (2005) Neutrophils in human myocardial infarction with rupture of the free wall. Cardiovasc Pathol 14(5):247–250. https://doi.org/10.1016/j.carpath.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  12. Biasucci LM, Liuzzo G, Giubilato S, Della Bona R, Leo M, Pinnelli M, Severino A, Gabriele M, Brugaletta S, Piro M, Crea F (2009) Delayed neutrophil apoptosis in patients with unstable angina: relation to C-reactive protein and recurrence of instability. Eur Heart J 30(18):2220–2225. https://doi.org/10.1093/eurheartj/ehp248

    Article  CAS  PubMed  Google Scholar 

  13. Garlichs CD, Eskafi S, Cicha I, Schmeisser A, Walzog B, Raaz D, Stumpf C, Yilmaz A, Bremer J, Ludwig J, Daniel WG (2004) Delay of neutrophil apoptosis in acute coronary syndromes. J Leukoc Biol 75(5):828–835. https://doi.org/10.1189/jlb.0703358

    Article  CAS  PubMed  Google Scholar 

  14. Haumer M, Amighi J, Exner M, Mlekusch W, Sabeti S, Schlager O, Schwarzinger I, Wagner O, Minar E, Schillinger M (2005) Association of neutrophils and future cardiovascular events in patients with peripheral artery disease. J Vasc Surg 41(4):610–617. https://doi.org/10.1016/j.jvs.2005.01.013

    Article  PubMed  Google Scholar 

  15. Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61(3):481–497. https://doi.org/10.1016/j.cardiores.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  16. Jolly SR, Kane WJ, Hook BG, Abrams GD, Kunkel SL, Lucchesi BR (1986) Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. Am Heart J 112(4):682–690. https://doi.org/10.1016/0002-8703(86)90461-8

    Article  CAS  PubMed  Google Scholar 

  17. Kin H, Wang NP, Halkos ME, Kerendi F, Guyton RA, Zhao ZQ (2006) Neutrophil depletion reduces myocardial apoptosis and attenuates NFkappaB activation/TNFalpha release after ischemia and reperfusion. J Surg Res 135(1):170–178. https://doi.org/10.1016/j.jss.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  18. Li S, Feng J, Wei S, Qian X, Cao J, Chen B (2015) Delayed neutrophil apoptosis mediates intermittent hypoxia-induced progressive heart failure in pressure-overloaded rats. Sleep Breath 20(1):95–102. https://doi.org/10.1007/s11325-015-1190-2

    Article  PubMed  Google Scholar 

  19. Strober W (2015) Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol 111:A3.B.1-a3.B.3. https://doi.org/10.1002/0471142735.ima03bs111

    Article  Google Scholar 

  20. Istvan V, Clemens H, Helga SN, R. C, (1995) A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  Google Scholar 

  21. Harbrecht BG, Billiar TR, Curran RD, Stadler J, Simmons RL (1993) Hepatocyte injury by activated neutrophils in vitro is mediated by proteases. Ann Surg 218:120–128

    Article  CAS  Google Scholar 

  22. Dyugovskaya L, Polyakov A (2010) Neutrophil apoptosis and hypoxia. Fiziol Zh 56(5):115–124

    Article  CAS  Google Scholar 

  23. Buckley CD, Ross EA, McGettrick HM, Osborne CE, Haworth O, Schmutz C, Stone PC, Salmon M, Matharu NM, Vohra RK, Nash GB, Rainger GE (2006) Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J Leukoc Biol 79(2):303–311. https://doi.org/10.1189/jlb.0905496

    Article  CAS  PubMed  Google Scholar 

  24. Dyugovskaya L, Polyakov A, Ginsberg D, Lavie P, Lavie L (2011) Molecular pathways of spontaneous and TNF-{alpha}-mediated neutrophil apoptosis under intermittent hypoxia. Am J Respir Cell Mol Biol 45(1):154–162. https://doi.org/10.1165/rcmb.2010-0025OC

    Article  CAS  PubMed  Google Scholar 

  25. Larissa Dyugovskaya AP, Cohen-Kaplan V, Lavie P, Lavie L (2012) Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling. J Transl Med 10:211–224

    Article  Google Scholar 

  26. Lavie L (2015) Oxidative stress in obstructive sleep apnea and intermittent hypoxia–revisited–the bad ugly and good: implications to the heart and brain. Sleep Med Rev 20:27–45. https://doi.org/10.1016/j.smrv.2014.07.003

    Article  PubMed  Google Scholar 

  27. Li S, Qian XH, Zhou W, Zhang Y, Feng J, Wan NS, Zhang Z, Guo R, Chen BY (2011) Time-dependent inflammatory factor production and NFkappaB activation in a rodent model of intermittent hypoxia. Swiss Med Wkly 141:w13309. https://doi.org/10.4414/smw.2011.13309

    Article  PubMed  Google Scholar 

  28. Chello M, Anselmi A, Spadaccio C, Patti G, Goffredo C, Di Sciascio G, Covino E (2007) Simvastatin increases neutrophil apoptosis and reduces inflammatory reaction after coronary surgery. Ann Thorac Surg 83(4):1374–1380. https://doi.org/10.1016/j.athoracsur.2006.10.065

    Article  PubMed  Google Scholar 

  29. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  CAS  Google Scholar 

  30. Foster GE, Poulin MJ, Hanly PJ (2007) Intermittent hypoxia and vascular function: implications for obstructive sleep apnoea. Exp Physiol 92(1):51–65. https://doi.org/10.1113/expphysiol.2006.035204

    Article  PubMed  Google Scholar 

  31. Yamagata K (2020) Protective Effect of Epigallocatechin Gallate on Endothelial Disorders in Atherosclerosis. J Cardiovasc Pharmacol 75(4):292–298. https://doi.org/10.1097/FJC.0000000000000792

    Article  CAS  PubMed  Google Scholar 

  32. Perrotta I (2020) The microscopic anatomy of endothelial cells in human atherosclerosis: Focus on ER and mitochondria. J Anat 237(6):1015–1025. https://doi.org/10.1111/joa.13281

    Article  PubMed  Google Scholar 

  33. Cancel LM, Ebong EE, Mensah S, Hirschberg C, Tarbell JM (2016) Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis 252:136–146. https://doi.org/10.1016/j.atherosclerosis.2016.07.930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hlubocka Z, Umnerova V, Heller S, Peleska J, Jindra A, Jachymova M, Kvasnicka J, Horky K, Aschermann M (2002) Circulating intercellular cell adhesion molecule-1, endothelin-1 and von Willebrand factor-markers of endothelial dysfunction in uncomplicated essential hypertension: the effect of treatment with ACE inhibitors. J Hum Hypertens 16(8):557–562. https://doi.org/10.1038/sj.jhh.1001403

    Article  CAS  PubMed  Google Scholar 

  35. Pilkauskaite G, Miliauskas S, Vitkauskiene A, Sakalauskas R (2014) Vascular adhesion molecules in men with obstructive sleep apnea: associations with obesity and metabolic syndrome. Sleep Breath 18(4):869–874. https://doi.org/10.1007/s11325-014-0958-0

    Article  PubMed  Google Scholar 

  36. Kaczmarek E, Bakker JP, Clarke DN, Csizmadia E, Kocher O, Veves A, Tecilazich F, O’Donnell CP, Ferran C, Malhotra A (2013) Molecular biomarkers of vascular dysfunction in obstructive sleep apnea. PLoS ONE 8(7):e70559. https://doi.org/10.1371/journal.pone.0070559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hung MW, Kravtsov GM, Lau CF, Poon AM, Tipoe GL, Fung ML (2013) Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. J Pineal Res 55(3):247–256. https://doi.org/10.1111/jpi.12067

    Article  CAS  PubMed  Google Scholar 

  38. Jiang Y, Jiang L-LI, Maimaitirexiati X-MZY, Zhang Y, Wu L (2015) Irbesartan attenuates TNF-α-induced ICAM-1, VCAM-1, and E-selectin expression through suppression of NF-κB pathway in HUVECs. Eur Rev Med Pharmacol Sc 19(17):3295–3302

    CAS  Google Scholar 

  39. Kent BD, Ryan S, McNicholas WT (2011) Obstructive sleep apnea and inflammation: relationship to cardiovascular co-morbidity. Respir Physiol Neurobiol 178(3):475–481. https://doi.org/10.1016/j.resp.2011.03.015

    Article  PubMed  Google Scholar 

  40. Ramar K, Caples SM (2011) Vascular changes, cardiovascular disease and obstructive sleep apnea. Future Cardiol 7(2):241–249. https://doi.org/10.2217/fca.10.123

    Article  CAS  PubMed  Google Scholar 

  41. Zhao H, Zhao Y, Li X, Xu L, Jiang F, Hou W, Dong L, Cao J (2018) Effects of Antioxidant Tempol on Systematic Inflammation and Endothelial Apoptosis in Emphysematous Rats Exposed to Intermittent Hypoxia. Yonsei Med J 59(9):1079–1087. https://doi.org/10.3349/ymj.2018.59.9.1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81670084, 81970084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Jie Cao.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Animal Ethical and Welfare committee of Tianjin Medical University guidelines for the care and use of animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, L., Hu, J. et al. Polymorphonuclear neutrophils promote endothelial apoptosis by enhancing adhesion upon stimulation by intermittent hypoxia. Sleep Breath 26, 1173–1180 (2022). https://doi.org/10.1007/s11325-021-02503-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-021-02503-z

Keywords

Navigation