Skip to main content
Log in

Nasal function and CPAP use in patients with obstructive sleep apnoea: a systematic review

  • ENT • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

This systematic review was conducted to answer the following 3 questions: ‘Does nasal pathology affect CPAP use?’, ‘What is the effect of CPAP on the nose?’ and ‘Does treatment of nasal pathology affect CPAP use?’.

Methods

Pubmed and Scopus databases were searched for articles relevant to the study questions up to October 2020.

Results

Sixty-three articles were selected, of which a majority were observational studies. Most studies identified a correlation between larger nasal cross-sectional area or lower nasal resistance and higher CPAP compliance or lower CPAP pressures; however, nasal symptoms at baseline did not appear to affect CPAP use. The effect of CPAP on the nose remains uncertain: while most studies suggested increased mucosal inflammation with CPAP, those investigating symptoms presented contradictory results, with some reporting an increase and others an improvement in nasal symptoms. Evidence is clearer for nasal surgery leading to an increase in CPAP compliance and a decrease in CPAP pressures, whereas there is little evidence available for the use of topical nasal steroids.

Conclusion

There appears to be a link between nasal volumes or nasal resistance and CPAP compliance, an increase in nasal inflammation caused by CPAP and a beneficial effect of nasal surgery on CPAP usage, but no significant effect of CPAP on nasal patency or effect of topical steroids on CPAP compliance. Results are more mitigated with regard to the effect of nasal symptoms on CPAP use and vice versa, and further research in this area would help identify patients who may benefit from additional support or treatment alongside CPAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Articles listed on Pubmed and Scopus were used.

Code availability

Not applicable.

References

  1. American Academy of Sleep Medicine (2001) The international classification of sleep disorders, revised: diagnostic and coding manual. Illinois, Chicago

    Google Scholar 

  2. Senaratna C et al (2017) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81

  3. Marshall N et al (2008) Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep 31(8):1079–85

    PubMed  PubMed Central  Google Scholar 

  4. Young T et al (1997) Sleep-disordered breathing and motor vehicle accidents in a population-based sample of employed adults. Sleep 20(8):608–13

    Article  CAS  PubMed  Google Scholar 

  5. Sateia M (2014) International classification of sleep disorders-third edition: highlights and modifications. Chest 146(5):1387–1394

    Article  PubMed  Google Scholar 

  6. Sullivan C et al (1981) Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1(8225):862–5

    Article  CAS  PubMed  Google Scholar 

  7. American Thoracic Society (1994) Indications and standards for use of nasal continuous positive airway pressure (CPAP) in sleep apnea syndromes. Am J Respir Crit Care Med 150:1738–1745

  8. Giles T et al (2006) Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst Rev 25(1):CD001106

    Google Scholar 

  9. Weaver T, Sawyer A (2010) Adherence to continuous positive airway pressure treatment for obstructive sleep apnoea: implications for future interventions. Indian J Med Res 131:245–58

    PubMed  Google Scholar 

  10. Kohler M et al (2010) Predictors of long-term compliance with continuous positive airway pressure. Thorax 65(9):829–32

    Article  PubMed  Google Scholar 

  11. Randerath W et al (2002) Efficiency of cold passover and heated humidification under continuous positive airway pressure. Eur Respir J 20(1):183–6

    Article  CAS  PubMed  Google Scholar 

  12. Massie C et al (1999) Effects of humidification on nasal symptoms and compliance in sleep apnea patients using continuous positive airway pressure. Chest 116(2):403–8

    Article  CAS  PubMed  Google Scholar 

  13. Mador M et al (2005) Effect of heated humidification on compliance and quality of life in patients with sleep apnea using nasal continuous positive airway pressure. Chest 128(4):2151–8

    Article  PubMed  Google Scholar 

  14. Hollandt J, Mahlerwein M (2003) Nasal breathing and continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA). Sleep & breathing  7(2):87–94

    Article  Google Scholar 

  15. Rauscher H et al (1991) Acceptance of CPAP therapy for sleep apnea. Chest 100(4):1019–23

    Article  CAS  PubMed  Google Scholar 

  16. Catcheside P (2010) Predictors of continuous positive airway pressure adherence.  Med Rep 2:70

    Google Scholar 

  17. Kalan A et al (1999) Adverse effects of nasal continuous positive airway pressure therapy in sleep apnoea syndrome. J Laryngol Otol 113(10):888–92

    Article  CAS  PubMed  Google Scholar 

  18. Georgalas C (2011) The role of the nose in snoring and obstructive sleep apnoea: an update. Eur Arch Otorhinolaryngol 268(9):1365–1373

  19. Masdeu M et al (2011) Awake measures of nasal resistance and upper airway resistance on CPAP during sleep. J Clin Sleep Med: JCSM: official publication of the American Academy of Sleep Medicine 7(1):31–40

    Google Scholar 

  20. Li H et al (2005) Acoustic reflection for nasal airway measurement in patients with obstructive sleep apnea-hypopnea syndrome. Sleep 28(12):1554–9

    Article  PubMed  Google Scholar 

  21. Mo S et al (2021) Nasal peak inspiratory flow in healthy and obstructed patients: systematic review and meta-analysis. Laryngoscope 131(2):260–267

    Article  PubMed  Google Scholar 

  22. Desfonds P et al (1998) Nasal resistance in snorers with or without sleep apnea: effect of posture and nasal ventilation with continuous positive airway pressure. Sleep 21(6):625–32

    Article  CAS  PubMed  Google Scholar 

  23. Stewart M et al (2004) Development and validation of the Nasal Obstruction Symptom Evaluation (NOSE) scale. Otolaryngol Head Neck Surg 130(2):157–163

    Article  PubMed  Google Scholar 

  24. Juniper E et al (1999) Validation of the standardized version of the Rhinoconjunctivitis Quality of Life Questionnaire. J Allergy Clin Immunol 104(2 Pt 1):364–9

    Article  CAS  PubMed  Google Scholar 

  25. Rhee J et al (2014) A systematic review of patient-reported nasal obstruction scores: defining normative and symptomatic ranges in surgical patients. JAMA Facial Plast Surg 16(3):219–25

    Article  PubMed  PubMed Central  Google Scholar 

  26. Howarth P et al (2005) Objective monitoring of nasal airway inflammation in rhinitis. J Allergy Clin Immunol 115(3 Suppl 1):S414-41

    Article  PubMed  Google Scholar 

  27. Morris L et al (2006) Acoustic rhinometry predicts tolerance of nasal continuous positive airway pressure: a pilot study. Am J Rhinol 20(2):133–7

    Article  PubMed  Google Scholar 

  28. Park P et al (2017) Influencing factors on CPAP adherence and anatomic characteristics of upper airway in OSA subjects. Medicine 96(51):e8818

    Article  PubMed  PubMed Central  Google Scholar 

  29. Värendh M et al (2019) PAP treatment in patients with OSA does not induce long-term nasal obstruction. J Sleep Res 28(5):e12768

    Article  PubMed  Google Scholar 

  30. So Y et al (2009) Initial adherence to autotitrating positive airway pressure therapy: influence of upper airway narrowing. Clin Exp Otorhinolaryngol 2(4):181–5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haddad F et al (2013) The influence of nasal abnormalities in adherence to continuous positive airway pressure device therapy in obstructive sleep apnea patients. Sleep Breath 17(4):1201–7

    Article  PubMed  Google Scholar 

  32. Kim H et al (2007) Influence of upper airway narrowing on the effective continuous positive airway pressure level. Laryngoscope 117(1):82–5

    Article  PubMed  Google Scholar 

  33. Camacho M et al (2016) Inferior turbinate size and CPAP titration based treatment pressures: no association found among patients who have not had nasal surgery. Int J Otolaryngol, Epub 2016

  34. Wakayama T, Suzuki M, Tanuma T (2016) Effect of nasal obstruction on continuous positive airway pressure treatment: computational fluid dynamics analyses. PloS One 11(3):e0150951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sugiura T et al (2007) Influence of nasal resistance on initial acceptance of continuous positive airway pressure in treatment for obstructive sleep apnea syndrome. Respiration 74(1):56–60

    Article  PubMed  Google Scholar 

  36. Inoue A et al (2019) Nasal function and CPAP compliance. Auris Nasus Larynx 46(4):548–558

    Article  PubMed  Google Scholar 

  37. Hsu Y et al (2020) Role of rhinomanometry in the prediction of therapeutic positive airway pressure for obstructive sleep apnea. Respir Res 21(1):115

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hueto J et al (2016) Usefulness of rhinomanometry in the identification and treatment of patients with obstructive sleep apnoea: an algorithm for predicting the relationship between nasal resistance and continuous positive airway pressure. a retrospective study. Clin Otolaryngol 41(6):750–757

    Article  CAS  PubMed  Google Scholar 

  39. Parikh N et al (2014) Clinical control in the dual diagnosis of obstructive sleep apnea syndrome and rhinitis: a prospective analysis. Am J Rhinol allergy 28(1):e52-5

    Article  PubMed  Google Scholar 

  40. Kreivi H et al (2010) Frequency of upper airway symptoms before and during continuous positive airway pressure treatment in patients with obstructive sleep apnea syndrome. Respiration 80(6):488–94

    Article  PubMed  Google Scholar 

  41. Shadan F et al (2005) Nasal cytology: a marker of clinically silent inflammation in patients with obstructive sleep apnea and a predictor of noncompliance with nasal CPAP therapy. J Clin Sleep Med 1(3):266–270

    Article  PubMed  Google Scholar 

  42. Hoffstein V et al (1992) Treatment of obstructive sleep apnea with nasal continuous positive airway pressure. Patient compliance, perception of benefits, and side effects. Am Rev Respir Dis 145(4 Pt 1):841–845

    Article  CAS  PubMed  Google Scholar 

  43. Pépin J et al (1995) Side effects of nasal continuous positive airway pressure in sleep apnea syndrome. Study of 193 patients in two French sleep centers. Chest 107(2):375–81

    Article  PubMed  Google Scholar 

  44. Meslier N et al (1998) A French survey of 3,225 patients treated with CPAP for obstructive sleep apnoea: benefits, tolerance, compliance and quality of life. Eur Respir J 12(1):185–92

    Article  CAS  PubMed  Google Scholar 

  45. Lam A et al (2017) Validated measures of insomnia, function, sleepiness, and nasal obstruction in a CPAP alternatives clinic population. J Clin Sleep Med  13(8):949–957

    Article  PubMed  PubMed Central  Google Scholar 

  46. Baltzan M, Elkholi O, Wolkove N (2009) Evidence of interrelated side effects with reduced compliance in patients treated with nasal continuous positive airway pressure. Sleep Med 10(2):198–205

    Article  PubMed  Google Scholar 

  47. Duong M et al (2005) Use of heated humidification during nasal CPAP titration in obstructive sleep apnoea syndrome. Eur Respir J 26(4):679–85

    Article  CAS  PubMed  Google Scholar 

  48. Koutsourelakis I et al (2011) Nasal inflammation in sleep apnoea patients using CPAP and effect of heated humidification. Eur Respir J 37(3):587–94

    Article  CAS  PubMed  Google Scholar 

  49. Yu C et al (2013) The effects of heated humidifier in continuous positive airway pressure titration. Sleep Breath 17(1):133–138

    Article  PubMed  Google Scholar 

  50. Lojander J, Brander P, Ammälä K (1999) Nasopharyngeal symptoms and nasal continuous positive airway pressure therapy in obstructive sleep apnoea syndrome. Acta Otolaryngol 119(4):497–502

    Article  CAS  PubMed  Google Scholar 

  51. Pitts K et al (2018) The effect of continuous positive airway pressure therapy on nasal patency. Int Forum Allergy Rhinol 8(10):1136–1144

    Article  PubMed  Google Scholar 

  52. Cisternas A et al (2017) Effects of CPAP in patients with obstructive apnoea: is the presence of allergic rhinitis relevant? Sleep Breath  21(4):893–900

    Article  CAS  PubMed  Google Scholar 

  53. Skirko J et al (2020) Association of allergic rhinitis with change in nasal congestion in new continuous positive airway pressure users. JAMA Otolaryngol Head Neck Surg 146(6):523–529

    Article  PubMed  Google Scholar 

  54. Rakotonanahary D et al (2001) Predictive factors for the need for additional humidification during nasal continuous positive airway pressure therapy. Chest 119(2):460–5

    Article  CAS  PubMed  Google Scholar 

  55. Ruhle K et al (2011) Quality of life, compliance, sleep and nasopharyngeal side effects during CPAP therapy with and without controlled heated humidification. Sleep Breath 15(3):479–485

    Article  PubMed  Google Scholar 

  56. Brander P, Soirinsuo M, Lohela P (1999) Nasopharyngeal symptoms in patients with obstructive sleep apnea syndrome Effect of nasal CPAP treatment. Respiration 66(2):128–135

    Article  CAS  PubMed  Google Scholar 

  57. Yang Q et al (2018) Effect of continuous positive airway pressure on allergic rhinitis in patients with obstructive sleep apnea-hypopnea syndrome. Ther Clin Risk Manag 14:1507–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Balsalobre L et al (2017) Acute impact of continuous positive airway pressure on nasal patency. Int Forum Allergy Rhinol 7(7):712–717

    Article  PubMed  Google Scholar 

  59. İriz A et al (2017) Does nasal congestion have a role in decreased resistance to regular CPAP usage? Eur Arch Otorhinolaryngol 274(11):4031–4034

    Article  PubMed  Google Scholar 

  60. Alahmari M et al (2012) Dose response of continuous positive airway pressure on nasal symptoms, obstruction and inflammation in vivo and in vitro. Eur Respir J 40(5):1180–90

    Article  PubMed  Google Scholar 

  61. Skoczyński S et al (2008) Short-term CPAP treatment induces a mild increase in inflammatory cells in patients with sleep apnoea syndrome. Rhinology 46(2):144–50

    PubMed  Google Scholar 

  62. Bossi R et al (2004) Effects of long-term nasal continuous positive airway pressure therapy on morphology, function, and mucociliary clearance of nasal epithelium in patients with obstructive sleep apnea syndrome. Laryngoscope 114(8):1431–4

    Article  PubMed  Google Scholar 

  63. Lacedonia D et al (2011) Effect of CPAP-therapy on bronchial and nasal inflammation in patients affected by obstructive sleep apnea syndrome. Rhinology 49(2):232–7

    Article  CAS  PubMed  Google Scholar 

  64. Gelardi M et al (2012) Regular CPAP utilization reduces nasal inflammation assessed by nasal cytology in obstructive sleep apnea syndrome. Sleep Med 13(7):859–63

    Article  PubMed  Google Scholar 

  65. Constantinidis J et al (2000) Fine-structural investigations of the effect of nCPAP-mask application on the nasal mucosa. Acta Otolaryngol 120(3):432–7

    Article  CAS  PubMed  Google Scholar 

  66. Almendros I et al (2008) Continuous positive airway pressure (CPAP) induces early nasal inflammation. Sleep 31(1):127–31

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vilaseca I et al (2016) Early effects of continuous positive airway pressure in a rodent model of allergic rhinitis. Sleep Med 27–28:25–27

    Article  PubMed  Google Scholar 

  68. Sommer J et al (2014) Functional short- and long-term effects of nasal CPAP with and without humidification on the ciliary function of the nasal respiratory epithelium. Sleep Breath 18(1):85–93

    Article  PubMed  Google Scholar 

  69. White D, Nates R, Bartley J (2017) Model identifies causes of nasal drying during pressurised breathing. Respir Physiol Neurobiol 243:97–100

    Article  PubMed  Google Scholar 

  70. Fischer Y et al (2008) Effects of nasal mask leak and heated humidification on nasal mucosa in the therapy with nasal continuous positive airway pressure (nCPAP). Sleep Breath 12(4):353–357

    Article  PubMed  Google Scholar 

  71. Camacho M et al (2015) The effect of nasal surgery on continuous positive airway pressure device use and therapeutic treatment pressures: a systematic review and meta-analysis. Sleep 38(2):279–86

    Article  PubMed  PubMed Central  Google Scholar 

  72. Powell N et al (2001) Radiofrequency treatment of turbinate hypertrophy in subjects using continuous positive airway pressure: a randomized, double-blind, placebo-controlled clinical pilot trial. Laryngoscope 111(10):1783–90

    Article  CAS  PubMed  Google Scholar 

  73. Friedman M et al (2000) Effect of improved nasal breathing on obstructive sleep apnea. Otolaryngol Head Neck Surg 122(1):71–74

    Article  CAS  PubMed  Google Scholar 

  74. Sufioğlu M et al (2012) The efficacy of nasal surgery in obstructive sleep apnea syndrome: a prospective clinical study. Eur Arch Otorhinolaryngol 269(2):487–494

    Article  PubMed  Google Scholar 

  75. Nakata S et al (2005) Nasal resistance for determinant factor of nasal surgery in CPAP failure patients with obstructive sleep apnea syndrome. Rhinology 43(4):296–9

    PubMed  Google Scholar 

  76. Poirier J, George C, Rotenberg B (2014) The effect of nasal surgery on nasal continuous positive airway pressure compliance. Laryngoscope 124(1):317–9

    Article  PubMed  Google Scholar 

  77. Zonato A et al (2006) Upper airway surgery: the effect on nasal continuous positive airway pressure titration on obstructive sleep apnea patients. Eur Arch Otorhinolaryngol 263(5):481–486

    Article  PubMed  Google Scholar 

  78. Sériès F, St Pierre S, Carrier G (1992) Effects of surgical correction of nasal obstruction in the treatment of obstructive sleep apnea. Am Rev Respir Dis 146(5 Pt 1):1261–5

    Article  PubMed  Google Scholar 

  79. Bican A et al (2010) What is the efficacy of nasal surgery in patients with obstructive sleep apnea syndrome? J Craniofac Surg 21(6):1801–6

    Article  PubMed  Google Scholar 

  80. Iwata N et al (2020) Clinical indication of nasal surgery for the CPAP intolerance in obstructive sleep apnea with nasal obstruction. Auris Nasus Larynx 47(6):1018–1022

    Article  PubMed  Google Scholar 

  81. Means C, Camacho M, Capasso R (2016) Long-term outcomes of radiofrequency ablation of the inferior turbinates. Indian J Otolaryngol Head Neck Surg 68(4):424–428

    Article  PubMed  Google Scholar 

  82. Modica D et al (2018) Functional nasal surgery and use of CPAP in OSAS patients: our experience. Indian J Otolaryngol Head Neck Surg 70(4):559–565

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kempfle J et al (2017) A cost-effectiveness analysis of nasal surgery to increase continuous positive airway pressure adherence in sleep apnea patients with nasal obstruction. Laryngoscope 127(4):977–983

    Article  PubMed  Google Scholar 

  84. Ryan S et al (2009) Effects of heated humidification and topical steroids on compliance, nasal symptoms, and quality of life in patients with obstructive sleep apnea syndrome using nasal continuous positive airway pressure. J Clin Sleep Med 5(5):422–427

    Article  PubMed  PubMed Central  Google Scholar 

  85. Strobel W et al (2011) Topical nasal steroid treatment does not improve CPAP compliance in unselected patients with OSAS. Respir Med 105(2):310–5

    Article  PubMed  Google Scholar 

  86. Charakorn N et al (2017) The effects of topical nasal steroids on continuous positive airway pressure compliance in patients with obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath 21(1):3–8

    Article  PubMed  Google Scholar 

  87. Gelardi M et al (2019) Internal nasal dilator in patients with obstructive sleep apnea syndrome and treated with continuous positive airway pressure. Acta bio-medica : Atenei Parmensis 90(2-S):24–27

    Google Scholar 

  88. Collen J et al (2009) Clinical and polysomnographic predictors of short-term continuous positive airway pressure compliance. Chest 135(3):704–709

    Article  PubMed  Google Scholar 

  89. Kennedy B et al (2019) Pressure modification or humidification for improving usage of continuous positive airway pressure machines in adults with obstructive sleep apnoea. Cochrane Database Syst Rev 12(12):CD003531

    PubMed  Google Scholar 

  90. Tárrega J et al (2003) Nasal resistance and continuous positive airway pressure treatment for sleep apnea/hypopnea syndrome. Arch Bronconeumol 39(3):106–10

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Marina Brimioulle co-designed the study questions and the protocol, searched databases for relevant studies and prepared the draft of the manuscript. Konstantinos Chaidas co-designed the study questions and the protocol, critically reviewed the studies selected for inclusion and critically reviewed and approved the final manuscript as submitted.

Corresponding author

Correspondence to Marina Brimioulle.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Comment

CPAP is usually considered the gold standard treatment for OSA patients; however, the rate of compliance is its major obstacle. Managing different nasal pathologies would help patients and might affect CPAP tolerance. Nasal surgery in OSA is pivotal in terms of improving airflow dynamics. In a multilevel surgical plan, the nose should be considered, and its repair will significantly aid in the success rate of OSA surgery. The restoration of a patent nasal airway is also effective in increasing tolerance for CPAP that is delivered via a nasal or a full-face mask, if needed.

Sherif Mohammad Askar

Egypt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brimioulle, M., Chaidas, K. Nasal function and CPAP use in patients with obstructive sleep apnoea: a systematic review. Sleep Breath 26, 1321–1332 (2022). https://doi.org/10.1007/s11325-021-02478-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-021-02478-x

Keywords

Navigation