Breathing retraining in sleep apnoea: a review of approaches and potential mechanisms

Abstract

Purpose

Anatomically based treatments for obstructive sleep apnoea (OSA) may not completely resolve OSA. This has led to interest in exploring ways of addressing physiological risk factors. This review examines the literature for research reporting on the effects of various types of breathing training and breathing activities on sleep apnoea. It also reviews and discusses proposed therapeutic mechanisms.

Methods

A search of electronic databases was performed using the search terms related to various breathing therapies or to activities requiring high levels of breath control such as singing and the playing of musical instruments and sleep apnoea.

Results

A total of 14 suitable studies were reviewed. A diverse variety of breathing retraining approaches are reported to improve sleep apnoea, e.g., Buteyko method, inspiratory resistance training, and diaphragmatic breathing. There is also a reduced incidence of sleep apnoea with intensive and regular participation in activities that require high levels of breath control, e.g., singing and playing wind instruments. Improvements in sleep-disordered breathing are thought to be related to improvements in (1) muscle tone of the upper airway; (2) respiratory muscle strength; (3) neuroplasticity of breathing control; (4) oxygen levels; (5) hyperventilation/dysfunctional breathing; and (6) autonomic nervous system, metabolic, and inflammatory status.

Conclusion

Breathing retraining and regular practice of breath control activities such as singing and playing wind instruments are potentially helpful for sleep apnoea, particularly for individuals with minimal anatomical deficit and daytime breathing dysfunction. Research is needed to elucidate mechanisms, to inform patient selection, and to refine clinical protocols.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Weaver TE, Grunstein RR (2008) Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc 5(2):173–178

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Doff MH, Hoekema A, Wijkstra PJ, van der Hoeven J, Huddleston Slater JJ, de Bont LG, Stegenga B (2013) Oral appliance versus continuous positive airway pressure in obstructive sleep apnea syndrome: a 2-year follow-up. Sleep 36(9):1289–1296

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Tsuda H, Almeida FR, Tsuda T, Moritsuchi Y, Lowe AA (2010) Craniofacial changes after 2 years of nasal continuous positive airway pressure use in patients with obstructive sleep apnea. Chest 138(4):870–874

  4. 4.

    Battagel JM, Kotecha B (2005) Dental side-effects of mandibular advancement splint wear in patients who snore. Clin Otolaryngol 30(2):149–156

    CAS  PubMed  Google Scholar 

  5. 5.

    Eckert DJ (2016) Phenotypic approaches to obstructive sleep apnoea–new pathways for targeted therapy. Sleep Med Rev

  6. 6.

    Edwards BA, Sands SA, Eckert DJ, White DP, Butler JP, Owens RL, Malhotra A, Wellman A (2012) Acetazolamide improves loop gain but not the other physiological traits causing obstructive sleep apnoea. J Physiol 590(5):1199–1211

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lowe S et al. (2001) Idiopathic hyperventilation (IHV) during wakefulness and sleep Am Rev Respir Crit Care Med

  8. 8.

    Messineo L et al (2018) Breath-holding as a means to estimate the loop gain contribution to obstructive sleep apnoea. J Physiol 596(17):4043–4056

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Jack S et al (1998) Breath hold time in idiopathic hyperventilators. Eur Respir J 12(28):412S

    Google Scholar 

  10. 10.

    Courtney R, Cohen M (2008) Investigating the claims of Konstantin Buteyko M.D., PhD: the relationship of breath holding time to end tidal CO2 and other proposed measures of dysfunctional breathing. J Altern Complement Med 14(2):115–123

    PubMed  Google Scholar 

  11. 11.

    Jack S, Rossiter HB, Pearson MG (2004) Ventilatory responses to inhaled carbon dioxide, hypoxia, and exercise in idiopathic hyperventilation. Am J Respir Crit Care Med 170:118–125

    PubMed  Google Scholar 

  12. 12.

    Puhan MA, Suarez A, Lo Cascio C, Zahn A, Heitz M, Braendli O (2006) Didgeridoo playing as alternative treatment for obstructive sleep apnoea syndrome: randomised controlled trial. BMJ (Clinical Research Ed) 332(7536):266–270

    Google Scholar 

  13. 13.

    Wardrop PJC et al (2011) Do wind and brass players snore less? A cross-sectional study of snoring and daytime fatigue in professional orchestral musicians. Clin Otolaryngol: Official Journal Of ENT-UK ; Official Journal Of Netherlands Society For Oto-Rhino-Laryngology & Cervico-Facial Surgery 36(2):134–138

    CAS  Google Scholar 

  14. 14.

    Ward CP, York KM, McCoy JG (2012) Risk of obstructive sleep apnea lower in double reed wind musicians. J Clin Sleep Med 8(3):251–255

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Brown DL, Zahuranec DB, Majersik JJ, Wren PA, Gruis KL, Zupancic M, Lisabeth LD (2009) Risk of sleep apnea in orchestra members. Sleep Med 10(6):657–660

    PubMed  Google Scholar 

  16. 16.

    Hilton M et al (2013) Singing exercises improve sleepiness and frequency of snoring among snorers—a randomised controlled trial. Int J Otolaryngol Head Neck Surg 2(03):97

    Google Scholar 

  17. 17.

    Ojay A, Ernst E (2000) Can singing exercises reduce snoring? A pilot study. Complement Ther Med 8(3):151–156

    CAS  PubMed  Google Scholar 

  18. 18.

    Pai I, Lo S, Wolf D, Kajieker A (2008) The effect of singing on snoring and daytime somnolence. Sleep Breath 12(3):265–268

    PubMed  Google Scholar 

  19. 19.

    Vranish JR, Bailey EF (2016) Inspiratory muscle training improves sleep and mitigates cardiovascular dysfunction in obstructive sleep apnea. Sleep 39(6):1179–1185

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wang TG et al (2002) Resistive inspiratory muscle training in sleep-disordered breathing of traumatic tetraplegia. Arch Phys Med Rehabil 83(9):1325

    Google Scholar 

  21. 21.

    Sengul Y, Ozalevli S, Oztura I, Itil O, Baklan B (2011) The effect of exercise on obstructive sleep apnea: a randomized and controlled trial. Sleep Breath 15(1):49–56

    PubMed  Google Scholar 

  22. 22.

    Khaleghipour S, Masjedi M, Kelishadi R (2013) The effect of breathing exercises on the nocturnal enuresis in the children with the sleep-disordered breathing. Iran Red Crescent Med J 15(11):e8986–e8986

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Josephson SC, Rosen RC (1980) The experimental modification of sonorous breathing. J Appl Behav Anal 13(2):373–378

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Birch M (2004) Clinical update. Obstructive sleep apnoea and breathing retraining. Aust Nurs J 12(2):27–29

    PubMed  Google Scholar 

  25. 25.

    Birch M (2012) Sleep apnoea: a survey of breathing retraining. Aust Nurs J 20(4):40–41

    PubMed  Google Scholar 

  26. 26.

    Sengul YS et al (2011) The effect of exercise on obstructive sleep apnea: a randomized and controlled trial. Sleep Breathing = Schlaf & Atmung 15(1):49–56

    Google Scholar 

  27. 27.

    Ojay A, Ernst E (2000) Can singing exercises reduce snoring? A pilot study. Complem Ther Med 8(3):151–156

    CAS  Google Scholar 

  28. 28.

    Ward CP, York KM, McCoy JG (2012) Risk of obstructive sleep apnea lower in double reed wind musicians. J Clin Sleep Med: JCSM: official publication of the American Academy of Sleep Medicine 8(3):251

    Google Scholar 

  29. 29.

    Camacho M, Certal V, Abdullatif J, Zaghi S, Ruoff CM, Capasso R, Kushida CA (2015) Myofunctional therapy to treat obstructive sleep apnea: a systematic review and meta-analysis. Sleep 38(5):669–675

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Verma RK et al (2016) Oropharyngeal exercises in the treatment of obstructive sleep apnoea: our experience. Sleep Breathing = Schlaf & Atmung 20(4):1193–1201

    Google Scholar 

  31. 31.

    Lequeux T et al (2005) Physiotherapy in obstructive sleep apnea syndrome: preliminary results. Eur Arch Oto-Rhino-Laryngol: Official Journal Of The European Federation Of Oto-Rhino-Laryngological Societies (EUFOS): Affiliated With The German Society For Oto-Rhino-Laryngology - Head And Neck Surgery 262(6):501–503

    CAS  Google Scholar 

  32. 32.

    Valbuza JS, Oliveira MM, Conti CF, Prado LB, Carvalho LB, Prado GF (2008) Methods to increase muscle tonus of upper airway to treat snoring: systematic review. Arq Neuropsiquiatr 66(3B):773–776

    PubMed  Google Scholar 

  33. 33.

    Kreuter M, Kreuter C, Herth F (2008) Pneumological aspects of wind instrument performance--physiological, pathophysiological and therapeutic considerations. Pneumologie (Stuttgart, Germany) 62(2):83–87

    CAS  Google Scholar 

  34. 34.

    Rehling T et al (2017) Reduced inspiratory muscle strength in patients with type 2 diabetes mellitus and obstructive sleep apnoea. J Diabetes Res 2017:4121794–4121794

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Younes M et al (2007) Mechanisms of breathing instability in patients with obstructive sleep apnea. J Appl Physiol 103(6):1929–1941

    PubMed  Google Scholar 

  36. 36.

    Mateika JH, Syed Z (2013) Intermittent hypoxia, respiratory plasticity and sleep apnea in humans: present knowledge and future investigations. Respir Physiol Neurobiol 188(3):289–300

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Brown EC, Cheng S, McKenzie D, Butler JE, Gandevia SC, Bilston LE (2013) Respiratory movement of upper airway tissue in obstructive sleep apnea. Sleep 36(7):1069–1076

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Rice A, Fuglevand AJ, Laine CM, Fregosi RF (2011) Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles. J Neurophysiol 105(5):2330–2336

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cifra A, Nani F, Nistri A (2011) Respiratory motoneurons and pathological conditions: lessons from hypoglossal motoneurons challenged by excitotoxic or oxidative stress. Respir Physiol Neurobiol 179(1):89–96

    CAS  PubMed  Google Scholar 

  40. 40.

    Edwards BA, Sands SA, Owens RL, White DP, Genta PR, Butler JP, Malhotra A, Wellman A (2014) Effects of hyperoxia and hypoxia on the physiological traits responsible for obstructive sleep apnoea. J Physiol 592(20):4523–4535

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Tafil-Klawe M et al (2004) Reflex respiratory responses to progressive hyperoxic hypercapnia and normocapnic hypoxia in normocapnic and hypercapnic obstructive sleep apnea patients. J Physiol Pharmacol 55(Suppl 3):135–138

    PubMed  Google Scholar 

  42. 42.

    Hudgel DW, Hendricks C, Dadley A (1988) Alteration in obstrucitvie sleep apnea pattern induced by changes in oxygen and carbon dioxide inspired concentrations. Am Rev Respir Dis 138(1):16–19

    CAS  PubMed  Google Scholar 

  43. 43.

    Courtney R (2017) Breathing training for dysfunctional breathing in asthma: taking a multidimensional approach. Eur Respir J Open Res 3(4):00065–02017

    Google Scholar 

  44. 44.

    Meuret A, Ritz T (2010) Hyperventilation in panic disorder and asthma: empirical evidence and clinical strategies. Int J Psychophysiol 78(1):68–79

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lum LC (1975) Hyperventilation: the tip and the iceberg. J Psychomatic Res 19:375–383

    CAS  Google Scholar 

  46. 46.

    Law N, Ruane LE, Low K, Hamza K, Bardin PG (2018) Dysfunctional breathing is more frequent in chronic obstructive pulmonary disease than in asthma and in health. Respir Physiol Neurobiol 247:20–23

    PubMed  Google Scholar 

  47. 47.

    Folgering H, Colla P (1978) Some anomalies in the control of PACO2 in patients with a hyperventilation syndrome. Bull Europ Physiopath Resp 14:503–512

    CAS  Google Scholar 

  48. 48.

    Courtney R (2009) Functions and dysfunctions of breathing and their relationship to breathing therapy. Int J Osteopath Med 12:78–85

    Google Scholar 

  49. 49.

    Hagman C, Janson C, Emtner M (2011) Breathing retraining-a five-year follow-up of patients with dysfunctional breathing. Respir Med 105:1153–1159

    PubMed  Google Scholar 

  50. 50.

    Boulding R et al (2016) Dysfunctional breathing: a review of the literature and proposal for classification. Eur Respir Rev 25(141):287–294

    PubMed  Google Scholar 

  51. 51.

    Barker N, Everard ML (2015) Getting to grips with ‘dysfunctional breathing’. Paediatr Respir Rev 16(1):53–61

    PubMed  Google Scholar 

  52. 52.

    Borel JC et al (2012) Influence of CO(2) on upper airway muscles and chest wall/diaphragm corticomotor responses assessed by transcranial magnetic stimulation in awake healthy subjects. J Appl Physiol (1985) 112(5):798–805

    CAS  Google Scholar 

  53. 53.

    Li Y, Weed JG, Ren R, Sun Y, Zou K, Lu L, Tang X (2016) A case of behavioural hyperventilation associated with severe central sleep apnoea and follow-up management. Thorax 71(6):571–574

    PubMed  Google Scholar 

  54. 54.

    Pevernagie D, Mariman A, Vandenbussche N, Tobback E, Overeem S, Delesie L, Janssen H, Vogelaers D (2012) Behavioural hyperventilation as a novel clinical condition associated with central sleep apnoea: a report of three cases. Sleep Med 13(10):1317–1320

    PubMed  Google Scholar 

  55. 55.

    Deacon-Diaz NL et al (2018) Daytime loop gain is elevated in obstructive sleep apnea but not reduced by CPAP treatment. J Appl Physiol (1985) 125(5):1490–1497

    CAS  Google Scholar 

  56. 56.

    Wang TG, Grunstein RR, Teichtahl H (2007) Association between ventilatory response to hypercapnia and obstructive sleep apnea-hypopnea index in asymptomatic subjects. Sleep Breath 11(2):103–108

    PubMed  Google Scholar 

  57. 57.

    Chamberlin NL (2013) Brain circuitry mediating arousal from obstructive sleep apnea. Curr Opin Neurobiol 23(5):774–779

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Yokhana SS, Gerst DG 3rd, Lee DS, Badr MS, Qureshi T, Mateika JH (2012) Impact of repeated daily exposure to intermittent hypoxia and mild sustained hypercapnia on apnea severity. J Appl Physiol 112:367–377

    PubMed  Google Scholar 

  59. 59.

    Bowler SD, Green A, Mitchell A (1998) Buteyko breathing technique in asthma: a blinded randomised controlled trial. Med J Aust 169(7):575–578

    CAS  PubMed  Google Scholar 

  60. 60.

    Ritz T, Meuret AE, Wilhelm FH, Roth WT (2009) Changes in pCO2 symptoms, and lung function of asthma patients during capnometry-assisted breathing training. Appl Psychophysiol Biofeedback 34(1):1–6

    PubMed  Google Scholar 

  61. 61.

    Grammatopoulou EP et al (2014) Hyperventilation in asthma: validation study of the Nijmegen Questionnaire–NQ. J Asthma 51(8):839–846

    PubMed  Google Scholar 

  62. 62.

    Edwards BA, Andara C, Landry S, Sands SA, Joosten SA, Owens RL, White DP, Hamilton GS, Wellman A (2016) Upper-airway collapsibility and loop gain predict the response to oral appliance therapy in patients with obstructive sleep apnea. Am J Respir Crit Care Med 194(11):1413–1422

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Koutsourelakis I, Vagiakis E, Roussos C, Zakynthinos S (2006) Obstructive sleep apnoea and oral breathing in patients free of nasal obstruction. Eur Respir J 28(6):1222–1228

    CAS  PubMed  Google Scholar 

  64. 64.

    Tafil-Klawe M, Klawe JJ (2003) Role of breathing in genioglosus muscle response to hypoxia in older and younger subjects. J Physiol Pharmacol 54(Suppl 1):48–54

    PubMed  Google Scholar 

  65. 65.

    Trimer R, Cabidu R, Sampaio LL, Stirbulov R, Poiares D, Guizilini S, Bianchi AM, Costa FS, Mendes RG, Delfino A Jr, Arena R, Borghi-Silva A (2014) Heart rate variability and cardiorespiratory coupling in obstructive sleep apnea: elderly compared with young. Sleep Med 15(11):1324–1331

    CAS  PubMed  Google Scholar 

  66. 66.

    Jen R, Grandner MA, Malhotra A (2015) Future of sleep-disordered breathing therapy using a mechanistic approach. Can J Cardiol 31(7):880–888

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rosalba Courtney.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Courtney, R. Breathing retraining in sleep apnoea: a review of approaches and potential mechanisms. Sleep Breath 24, 1315–1325 (2020). https://doi.org/10.1007/s11325-020-02013-4

Download citation

Keywords

  • Sleep apnoea
  • Breathing retraining
  • Dysfunctional breathing