Skip to main content
Log in

Electrocardiogram-based sleep analysis for sleep apnea screening and diagnosis

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Despite the increasing number of research studies of cardiopulmonary coupling (CPC) analysis, an electrocardiogram-based technique, the use of CPC in underserved population remains underexplored. This study aimed to first evaluate the reliability of CPC analysis for the detection of obstructive sleep apnea (OSA) by comparing with polysomnography (PSG)-derived sleep outcomes.

Methods

Two hundred five PSG data (149 males, age 46.8 ± 12.8 years) were used for the evaluation of CPC regarding the detection of OSA. Automated CPC analyses were based on ECG signals only. Respiratory event index (REI) derived from CPC and apnea–hypopnea index (AHI) derived from PSG were compared for agreement tests.

Results

CPC-REI positively correlated with PSG-AHI (r = 0.851, p < 0.001). After adjusting for age and gender, CPC-REI and PSG-AHI were still significantly correlated (r = 0.840, p < 0.001). The overall results of sensitivity and specificity of CPC-REI were good.

Conclusion

Compared with the gold standard PSG, CPC approach yielded acceptable results among OSA patients. ECG recording can be used for the screening or diagnosis of OSA in the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AASM:

American Academy of Sleep Medicine

AHI:

apnea–hypopnea index

AUC:

area under the curve

CPC:

cardiopulmonary coupling

e-LFC:

elevated low-frequency coupling

ECG:

electrocardiogram

EEG:

electroencephalography

FDA:

Food and Drug Administration

HFC:

high-frequency coupling

HRV:

heart-rate variability

IRB:

Institutional Review Board

LFC:

low-frequency coupling

LR:

likelihood ratio

NPV:

negative predictive value

OCST:

out of center sleep testing

OSA:

obstructive sleep apnea

PPV:

positive predictive value

PSG:

polysomnography

REI:

respiratory event index

ROC:

receiver operating characteristic

RPSGT:

registered polysomnographic technologists

SD:

standard deviation

SDB:

sleep-disordered breathing

TIB:

time in bed

TST:

total sleep time

VLFC:

very-low-frequency coupling

References

  1. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, Hamilton GS, Dharmage SC (2016) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81. https://doi.org/10.1016/j.smrv.2016.07.002

    Article  PubMed  Google Scholar 

  2. Ma Y, Sun S, Peng CK, Fang Y, Thomas RJ (2017) Ambulatory blood pressure monitoring in Chinese patients with obstructive sleep apnea. J Clin Sleep Med 13(3):433–439. https://doi.org/10.5664/jcsm.6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collop NA, Anderson WM, Boehlecke B, Claman D, Goldberg R, Gottlieb DJ, Hudgel D, Sateia M, Schwab R (2007) Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable Monitoring Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 3(7):737–747

    Article  Google Scholar 

  4. Collop NA, Tracy SL, Kapur V, Mehra R, Kuhlmann D, Fleishman SA, Ojile JM (2011) Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation. J Clin Sleep Med 7(5):531–548. https://doi.org/10.5664/jcsm.1328

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yuceege M, Firat H, Demir A, Ardic S (2013) Reliability of the Watch-PAT 200 in detecting sleep apnea in highway bus drivers. J Clin Sleep Med 9(4):339–344. https://doi.org/10.5664/jcsm.2584

    Article  PubMed  PubMed Central  Google Scholar 

  6. Korkuyu E, Duzlu M, Karamert R, Tutar H, Yilmaz M, Ciftci B, Guven SF (2015) The efficacy of Watch PAT in obstructive sleep apnea syndrome diagnosis. Eur Arch Otorhinolaryngol 272(1):111–116. https://doi.org/10.1007/s00405-014-3097-0

    Article  PubMed  Google Scholar 

  7. Choi JH, Lee B, Lee JY, Kim HJ (2018) Validating the Watch-PAT for diagnosing obstructive sleep apnea in adolescents. J Clin Sleep Med 14(10):1741–1747. https://doi.org/10.5664/jcsm.7386

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gehring J, Gesche H, Drewniok G, Kuchler G, Patzak A (2018) Nocturnal blood pressure fluctuations measured by using pulse transit time in patients with severe obstructive sleep apnea syndrome. Sleep Breath 22(2):337–343. https://doi.org/10.1007/s11325-017-1555-9

    Article  PubMed  Google Scholar 

  9. Li Y, Gao H, Ma Y (2017) Evaluation of pulse oximeter derived photoplethysmographic signals for obstructive sleep apnea diagnosis. Medicine 96(18):e6755. https://doi.org/10.1097/md.0000000000006755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morgenthaler T, Alessi C, Friedman L, Owens J, Kapur V, Boehlecke B, Brown T, Chesson A Jr, Coleman J, Lee-Chiong T, Pancer J, Swick TJ (2007) Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007. Sleep 30(4):519–529

    Article  Google Scholar 

  11. Dumont M, Jurysta F, Lanquart JP, Migeotte PF, van de Borne P, Linkowski P (2004) Interdependency between heart rate variability and sleep EEG: linear/non-linear? Clin Neurophysiol 115(9):2031–2040. https://doi.org/10.1016/j.clinph.2004.04.007

    Article  PubMed  Google Scholar 

  12. Penzel T, Kantelhardt JW, Bartsch RP, Riedl M, Kraemer JF, Wessel N, Garcia C, Glos M, Fietze I, Schöbel C (2016) Modulations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography. Front Physiol 7:460–460. https://doi.org/10.3389/fphys.2016.00460

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stein PK, Pu Y (2012) Heart rate variability, sleep and sleep disorders. Sleep Med Rev 16(1):47–66. https://doi.org/10.1016/j.smrv.2011.02.005

    Article  PubMed  Google Scholar 

  14. Hill LK, Siebenbrock A (2009) Are all measures created equal? Heart rate variability and respiration - biomed 2009. Biomed Sci Instrum 45:71–76

    PubMed  Google Scholar 

  15. Billman GE (2011) Heart rate variability - a historical perspective. Front Physiol 2:86. https://doi.org/10.3389/fphys.2011.00086

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shaffer F, McCraty R, Zerr CL (2014) A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol 5:1040. https://doi.org/10.3389/fpsyg.2014.01040

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ma Y, McCraty R (2016) Heart rate variability in mind-body interventions. Complement Ther Med 29:A1–A2. https://doi.org/10.1016/j.ctim.2016.05.003

    Article  PubMed  Google Scholar 

  18. Ma Y, Tseng PH, Ahn A, Wu MS, Ho YL, Chen MF, Peng CK (2017) Cardiac autonomic alteration and metabolic syndrome: an ambulatory ECG-based study in a general population. Sci Rep 7:44363. https://doi.org/10.1038/srep44363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma Y, Wu CW, Peng CK, Ahn A, Bertisch SM, Lipsitz LA, Yeh GY, Manor B, Novak V, Hausdorff JM, Gow B, Wayne PM (2019) Complexity-based measures of heart rate dynamics in older adults following long- and short-term tai chi training: cross-sectional and randomized trial studies. Sci Rep 9(1):7500. https://doi.org/10.1038/s41598-019-43602-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomas RJ, Mietus JE, Peng CK, Goldberger AL (2005) An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep. Sleep 28(9):1151–1161

    Article  Google Scholar 

  21. Magnusdottir S, Hilmisson H (2018) Ambulatory screening tool for sleep apnea: analyzing a single-lead electrocardiogram signal (ECG). Sleep Breath 22(2):421–429. https://doi.org/10.1007/s11325-017-1566-6

    Article  PubMed  Google Scholar 

  22. Hayano J, Watanabe E, Saito Y, Sasaki F, Fujimoto K, Nomiyama T, Kawai K, Kodama I, Sakakibara H (2011) Screening for obstructive sleep apnea by cyclic variation of heart rate. Circ Arrhythm Electrophysiol 4(1):64–72. https://doi.org/10.1161/circep.110.958009

    Article  PubMed  Google Scholar 

  23. Berry RB, Brooks R, Gamaldo CE et al (2016) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine, Illinois Version 2.3. Darien

    Google Scholar 

  24. American Academy of Sleep Medicine (2014) International classification of sleep disorders, 3rd edn. American Academy of Sleep Medicine, Darien

    Google Scholar 

  25. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force (1999). Sleep 22 (5):667–689

  26. Gupta MA, Simpson FC (2015) Obstructive sleep apnea and psychiatric disorders: a systematic review. J Clin Sleep Med 11(2):165–175. https://doi.org/10.5664/jcsm.4466

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guilleminault C, Connolly S, Winkle R, Melvin K, Tilkian A (1984) Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. Lancet (London, England) 1(8369):126–131

    Article  CAS  Google Scholar 

  28. Hilmisson H, Lange N, Duntley SP (2018) Sleep apnea detection: accuracy of using automated ECG analysis compared to manually scored polysomnography (apnea hypopnea index). In: Sleep & breathing = Schlaf & Atmung, vol 23, pp 125–133. https://doi.org/10.1007/s11325-018-1672-0

    Chapter  Google Scholar 

  29. Harrington J, Schramm PJ, Davies CR, Lee-Chiong TL Jr (2013) An electrocardiogram-based analysis evaluating sleep quality in patients with obstructive sleep apnea. Sleep Breath 17(3):1071–1078. https://doi.org/10.1007/s11325-013-0804-9

    Article  PubMed  Google Scholar 

  30. Thomas RJ, Wood C, Bianchi MT (2018) Cardiopulmonary coupling spectrogram as an ambulatory clinical biomarker of sleep stability and quality in health, sleep apnea, and insomnia. Sleep 41(2):1–11. https://doi.org/10.1093/sleep/zsx196

  31. Hilmisson H, Sveinsdottir E, Lange N, Magnusdottir S (2019) Insomnia symptoms in primary care: a prospective study focusing on prevalence of undiagnosed co-morbid sleep disordered breathing. Eur J Intern Med 63:19–26. https://doi.org/10.1016/j.ejim.2019.01.011

    Article  PubMed  Google Scholar 

  32. Schramm PJ, Thomas R, Feige B, Spiegelhalder K, Riemann D (2013) Quantitative measurement of sleep quality using cardiopulmonary coupling analysis: a retrospective comparison of individuals with and without primary insomnia. Sleep Breath 17(2):713–721. https://doi.org/10.1007/s11325-012-0747-6

    Article  PubMed  Google Scholar 

  33. Yang AC, Yang CH, Hong CJ, Tsai SJ, Kuo CH, Peng CK, Mietus JE, Goldberger AL, Thomas RJ (2011) Sleep state instabilities in major depressive disorder: detection and quantification with electrocardiogram-based cardiopulmonary coupling analysis. Psychophysiology 48(2):285–291. https://doi.org/10.1111/j.1469-8986.2010.01060.x

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schramm PJ, Poland RE, Rao U (2014) Bupropion response on sleep quality in patients with depression: implications for increased cardiovascular disease risk. Eur Neuropsychopharmacol 24(2):207–214. https://doi.org/10.1016/j.euroneuro.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  35. Ma Y, Yeung A, Yang AC, Peng CK, Clain A, Alpert J, Fava M, Yeung AS (2018) The effects of tai chi on sleep quality in Chinese American patients with major depressive disorder: a pilot study. Behav Sleep Med 16(4):398–411. https://doi.org/10.1080/15402002.2016.1228643

    Article  PubMed  Google Scholar 

  36. Schramm PJ, Zobel I, Monch K, Schramm E, Michalak J (2016) Sleep quality changes in chronically depressed patients treated with mindfulness-based cognitive therapy or the cognitive behavioral analysis system of psychotherapy: a pilot study. Sleep Med 17:57–63. https://doi.org/10.1016/j.sleep.2015.09.022

    Article  PubMed  Google Scholar 

  37. Thomas RJ, Mietus JE, Peng CK, Goldberger AL, Crofford LJ, Chervin RD (2010) Impaired sleep quality in fibromyalgia: detection and quantification with ECG-based cardiopulmonary coupling spectrograms. Sleep Med 11(5):497–498. https://doi.org/10.1016/j.sleep.2009.09.003

    Article  PubMed  Google Scholar 

  38. Ibrahim LH, Jacono FJ, Patel SR, Thomas RJ, Larkin EK, Mietus JE, Peng CK, Goldberger AL, Redline S (2010) Heritability of abnormalities in cardiopulmonary coupling in sleep apnea: use of an electrocardiogram-based technique. Sleep 33(5):643–646

    Article  Google Scholar 

  39. Thomas RJ, Mietus JE, Peng CK, Gilmartin G, Daly RW, Goldberger AL, Gottlieb DJ (2007) Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method. Sleep 30(12):1756–1769

    Article  Google Scholar 

  40. Schramm PJ, Thomas RJ (2012) Assessment of therapeutic options for mild obstructive sleep apnea using cardiopulmonary coupling measures. J Clin Sleep Med 8(3):315–320. https://doi.org/10.5664/jcsm.1924

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee WH, Hong SN, Kim HJ, Rhee CS, Lee CH, Yoon IY, Kim JW (2016) A comparison of different success definitions in non-continuous positive airway pressure treatment for obstructive sleep apnea using cardiopulmonary coupling. J Clin Sleep Med 12(1):35–41. https://doi.org/10.5664/jcsm.5388

    Article  PubMed  PubMed Central  Google Scholar 

  42. Choi JH, Thomas RJ, Suh SY, Park IH, Kim TH, Lee SH, Lee HM, Yun CH, Lee SH (2015) Sleep quality change after upper airway surgery in obstructive sleep apnea: electrocardiogram-based cardiopulmonary coupling analysis. Laryngoscope 125(7):1737–1742. https://doi.org/10.1002/lary.25101

    Article  PubMed  Google Scholar 

  43. Lee WH, Ahn JC, We J, Rhee CS, Lee CH, Yun PY, Yoon IY, Kim JW (2014) Cardiopulmonary coupling analysis: changes before and after treatment with a mandibular advancement device. Sleep Breath 18(4):891–896. https://doi.org/10.1007/s11325-014-0961-5

    Article  PubMed  Google Scholar 

  44. Ramar K, Desrues B, Ramar P, Morgenthaler TI (2013) Analysis of cardiopulmonary coupling to assess adaptive servo-ventilation success in complex sleep apnea management. Sleep Breath 17(2):861–866. https://doi.org/10.1007/s11325-012-0780-5

    Article  PubMed  Google Scholar 

  45. Lee SH, Choi JH, Park IH, Lee SH, Kim TH, Lee HM, Park HK, Thomas RJ, Shin C, Yun CH (2012) Measuring sleep quality after adenotonsillectomy in pediatric sleep apnea. Laryngoscope 122(9):2115–2121. https://doi.org/10.1002/lary.23356

    Article  PubMed  Google Scholar 

  46. Ma Y, Hou F, Yang AC, Ahn AC, Fan L, Peng C-K (2019) Symbolic dynamics of electroencephalography is associated with the sleep depth and overall sleep quality in healthy adults. Physica A 513:22–31. https://doi.org/10.1016/j.physa.2018.08.043

    Article  Google Scholar 

  47. Xiong H, Shang P, Hou F, Ma Y (2019) Visibility graph analysis of temporal irreversibility in sleep electroencephalograms. Nonlinear Dyn 96(1):1–11. https://doi.org/10.1007/s11071-019-04768-2

    Article  Google Scholar 

  48. Hou F, Yu Z, Peng CK, Yang A, Wu C, Ma Y (2018) Complexity of wake electroencephalography correlates with slow wave activity after sleep onset. Front Neurosci 12:809. https://doi.org/10.3389/fnins.2018.00809

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mao X, Shang P, Wang J, Ma Y (2018) Characterizing time series by extended complexity-entropy curves based on Tsallis, Renyi, and power spectral entropy. Chaos (Woodbury, NY) 28(11):113106. https://doi.org/10.1063/1.5038758

    Article  Google Scholar 

  50. Ma Y, Shi W, Peng CK, Yang AC (2018) Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep Med Rev 37:85–93. https://doi.org/10.1016/j.smrv.2017.01.003

    Article  PubMed  Google Scholar 

  51. Shi W, Shang P, Ma Y, Sun S, Yeh C-H (2017) A comparison study on stages of sleep: quantifying multiscale complexity using higher moments on coarse-graining. Commun Nonlinear Sci Numer Simul 44:292–303. https://doi.org/10.1016/j.cnsns.2016.08.019

    Article  Google Scholar 

  52. Thomas RJ, Mietus JE, Peng CK, Guo D, Gozal D, Montgomery-Downs H, Gottlieb DJ, Wang CY, Goldberger AL (2014) Relationship between delta power and the electrocardiogram-derived cardiopulmonary spectrogram: possible implications for assessing the effectiveness of sleep. Sleep Med 15(1):125–131. https://doi.org/10.1016/j.sleep.2013.10.002

    Article  PubMed  Google Scholar 

  53. Jonas DE, Amick HR, Feltner C, Weber RP, Arvanitis M, Stine A, Lux L, Harris RP (2017) Screening for obstructive sleep apnea in adults: evidence report and systematic review for the US preventive services task force. Jama 317(4):415–433. https://doi.org/10.1001/jama.2016.19635

    Article  PubMed  Google Scholar 

  54. Ma Y, Yeh J, Sun S, Qiao J, Peng C (2013) Detecting pediatric sleep apnea: consistency on cardiopulmonary coupling and oximetry measurement. Sleep Med 14:e189

    Article  Google Scholar 

  55. Ma Y, Wei Y, Peng C-K (2016) Comparison of wristband-based and ECG-based sleep analyses. J Sleep Disord Ther 05. https://doi.org/10.4172/2167-0277.C1.005

  56. Young A, Home M, Churchward T, Freezer N, Holmes P, Ho M (2002) Comparison of sleep disturbance in mild versus severe Parkinson's disease. Sleep 25(5):573–577

    Article  Google Scholar 

  57. Diederich NJ, Rufra O, Pieri V, Hipp G, Vaillant M (2013) Lack of polysomnographic non-REM sleep changes in early Parkinson’s disease. Mov Disord 28(10):1443–1446. https://doi.org/10.1002/mds.25520

    Article  PubMed  Google Scholar 

  58. Martinez-Ramirez D, De Jesus S, Walz R, Cervantes-Arriaga A, Peng-Chen Z, Okun MS, Alatriste-Booth V, Rodriguez-Violante M (2015) A polysomnographic study of Parkinson’s disease sleep architecture. J Park Dis 2015:570375. https://doi.org/10.1155/2015/570375

    Article  Google Scholar 

  59. Parrino L, Smerieri A, Spaggiari MC, Terzano MG (2000) Cyclic alternating pattern (CAP) and epilepsy during sleep: how a physiological rhythm modulates a pathological event. Clin Neurophysiol 111(Suppl 2):S39–S46

    Article  Google Scholar 

  60. Tseng PH, Lee PL, Hsu WC, Ma Y, Lee YC, Chiu HM, Ho YL, Chen MF, Wu MS, Peng CK (2017) A higher proportion of metabolic syndrome in Chinese subjects with sleep-disordered breathing: a case-control study based on electrocardiogram-derived sleep analysis. PLoS One 12(1):e0169394. https://doi.org/10.1371/journal.pone.0169394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma Y, Yeung A, Yang AC, Peng CK, Clain A, Alpert J, Fava M, Yeung AS (2016) The effects of tai chi on sleep quality in Chinese American patients with major depressive disorder: a pilot study. Behav Sleep Med 16:1–17. https://doi.org/10.1080/15402002.2016.1228643

    Article  Google Scholar 

Download references

Funding

Yan Ma would like to acknowledge the grant support from the National Institutes of Health of the USA (T32AT000051). Yulin Wei would like to acknowledge the grant support from the National Natural Science Foundation of China (81273820).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Ma or Shuchen Sun.

Ethics declarations

Conflict of interest

Chung-Kang Peng is a co-patent holder for the ECG-based analytic technique for phenotyping sleep and sleep apnea, known as cardiopulmonary coupling (CPC) analysis. He also receives royalties from a license issued by Beth Israel Deaconess Medical Center to MyCardio, LLC. The other authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Ethical approval and informed consent

The datasets included in this study were collected previously from clinical studies with separate protocols approved by different Institutional Review Boards (IRB) accordingly, and all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the studies. All the data we used in this secondary analysis study were de-identified. Therefore, additional IRB approval was waived.

Additional information

Comment

With the caveats of limitations, cardiopulmonary coupling patterns may be a useful approach to screen for apnea in high risk populations. However, the addition of oximetry to the assessment would be complementary - thus those with mildly hypoxic disease will be detected, while those with severe hypoxia can be risk stratified.

Robert Thomas

MA, USA

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Sun, S., Zhang, M. et al. Electrocardiogram-based sleep analysis for sleep apnea screening and diagnosis. Sleep Breath 24, 231–240 (2020). https://doi.org/10.1007/s11325-019-01874-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-019-01874-8

Keywords

Navigation