Skip to main content

Validity of transit time–based blood pressure measurements in patients with and without heart failure or pulmonary arterial hypertension across different breathing maneuvers

A Correction to this article was published on 06 June 2020

This article has been updated

Abstract

Purpose

Pulse transit time (PTT) derived by ECG and plethysmographic signal can be a promising alternative to invasive or oscillometry-based blood pressure (BP) monitoring in sleep laboratories because it does not cause arousals from sleep. Therefore, this study assessed the validity of PTT for BP monitoring under sleep laboratory-like conditions.

Methods

Ten volunteers (55.8 ± 19.6 years), 12 patients with heart failure with reduced ejection fraction (HFrEF; 67.3 ± 8.6 years), and 14 patients with Nizza class I pulmonary arterial hypertension (PAH; 59.5 ± 13.4 years) performed different breathing patterns to simulate nocturnal sleep-disordered breathing (SDB). BP was measured at least every 15 min over 1 h using oscillometry (Task Force Monitor) and PTT (SOMNOscreen™) devices in free breathing conditions and during SDB simulation (alternating phases of hyperventilation and apneas).

Results

One hundred forty-two points of measurements were collected. No difference was found in both mean systolic BP (SBP) and diastolic BP (DBP) between oscillometric PTT-based BP measurements in the whole population and throughout the whole recording (SBP 111.3 ± 15.1 mmHg versus 110.0 ± 14.7 mmHg, p = 0.051; DBP 69.9 ± 12.2 versus 69.9 ± 14.2 mmHg, p = 0.701). Likewise, no significant difference in SBP and DBP was found between the two methods in the subgroups of healthy subjects, HFrEF patients and PAH patients, both in free breathing conditions (p > 0.05) and during SDB simulation (p > 0.05).

Conclusions

When monitoring BP in healthy subjects, and in patients with HFrEF or PAH, PTT provides a BP estimation comparable with oscillometric measurement, though slightly inaccurate, both in the condition of regular and unstable breathing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 06 June 2020

    After the publication of the original manuscript we found that the calculation of the supplemental data regarding the capacity of PTT-based blood pressure (BP) recordings to detect changes in systolic and diastolic BP in different cohorts of patients was incorrect. These errors occured when data were transformed from MS Excel to Sigma-Plot tables. In this correction, the affected data and the respective figures were now revised.

References

  1. Naughton MT (2015) Respiratory sleep disorders in patients with congestive heart failure. J Thorac Dis 7:1298–1310. https://doi.org/10.3978/j.issn.2072-1439.2015.07.02

    Article  PubMed  PubMed Central  Google Scholar 

  2. Oldenburg O, Bartsch S, Bitter T, Schmalgemeier H, Fischbach T, Westerheide N, Horstkotte D (2012) Hypotensive effects of positive airway pressure ventilation in heart failure patients with sleep-disordered breathing. Sleep Breath 16:753–757. https://doi.org/10.1007/s11325-011-0571-4

    Article  PubMed  Google Scholar 

  3. Omran H, Bitter T, Horstkotte D, Oldenburg O, Fox H (2018) Characteristics and circadian distribution of cardiac arrhythmias in patients with heart failure and sleep-disordered breathing. Clin Res Cardiol 107:965–974. https://doi.org/10.1007/s00392-018-1269-4

    Article  PubMed  Google Scholar 

  4. Javed F, Fox H, Armitstead J (2018) ResCSRF: algorithm to automatically extract Cheyne-Stokes respiration features from respiratory signals. IEEE Trans Biomed Eng 65:669–677. https://doi.org/10.1109/TBME.2017.2712102

    Article  PubMed  Google Scholar 

  5. Simmons EM, Leader H, Friedman SA, Davis B, Lee D, Winsor T, Caceres CA (1967) A computer program for the peripheral pulse wave. Am J Cardiol 19:827–831. https://doi.org/10.1016/0002-9149(67)90505-X

    CAS  Article  PubMed  Google Scholar 

  6. Hirata K, Kawakami M, O’Rourke MF (2006) Pulse wave analysis and pulse wave velocity: a review of blood pressure interpretation 100 years after Korotkov. Circ J 70:1231–1239. https://doi.org/10.1253/circj.70.1231

    Article  PubMed  Google Scholar 

  7. Bartsch S, Ostojic D, Schmalgemeier H, Bitter T, Westerheide N, Eckert S, Horstkotte D, Oldenburg O (2010) Validation of continuous blood pressure measurements by pulse transit time: a comparison with invasive measurements in a cardiac intensive care unit. Dtsch Med Wochenschr 135:2406–2412. https://doi.org/10.1055/s-0030-1269408

    CAS  Article  PubMed  Google Scholar 

  8. Schmalgemeier H, Bitter T, Bartsch S, Bullert K, Fischbach T, Eckert S, Horstkotte D, Oldenburg O (2012) Pulse transit time: validation of blood pressure measurement under positive airway pressure ventilation. Sleep Breath 16:1105–1112. https://doi.org/10.1007/s11325-011-0609-7

    Article  PubMed  Google Scholar 

  9. Spießhöfer J, Heinrich J, Bitter T, Efken C, Lehmann R, Eckert S, Horstkotte D, Oldenburg O (2014) Validation of blood pressure monitoring using pulse transit time in heart failure patients with Cheyne-Stokes respiration undergoing adaptive servoventilation therapy. Sleep Breath 18:411–421. https://doi.org/10.1007/s11325-013-0895-3

    Article  PubMed  Google Scholar 

  10. Minic M, Granton JT, Ryan CM (2014) Sleep disordered breathing in group 1 pulmonary arterial hypertension. J Clin Sleep Med 10:277–283. https://doi.org/10.5664/jcsm.3528

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schulz R, Baseler G, Ghofrani H et al (2002) Nocturnal periodic breathing in primary pulmonary hypertension. Eur Respir J 19:658–663. https://doi.org/10.1183/09031936.02.00225102

    CAS  Article  PubMed  Google Scholar 

  12. Oldenburg O, Lamp B, Faber L, Teschler H, Horstkotte D, Töpfer V (2007) Sleep-disordered breathing in patients with symptomatic heart failure. A contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail 9:251–257. https://doi.org/10.1016/j.ejheart.2006.08.003

    Article  PubMed  Google Scholar 

  13. Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M (2015) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 46:903–975. https://doi.org/10.1183/13993003.01032-2015

    CAS  Article  Google Scholar 

  14. Baumgartner H, Falk V, Bax JJ, de Bonis M, Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac E, Rodriguez Muñoz D, Rosenhek R, Sjögren J, Tornos Mas P, Vahanian A, Walther T, Wendler O, Windecker S, Zamorano JL, ESC Scientific Document Group, Roffi M, Alfieri O, Agewall S, Ahlsson A, Barbato E, Bueno H, Collet JP, Coman IM, Czerny M, Delgado V, Fitzsimons D, Folliguet T, Gaemperli O, Habib G, Harringer W, Haude M, Hindricks G, Katus HA, Knuuti J, Kolh P, Leclercq C, McDonagh TA, Piepoli MF, Pierard LA, Ponikowski P, Rosano GMC, Ruschitzka F, Shlyakhto E, Simpson IA, Sousa-Uva M, Stepinska J, Tarantini G, Tchétché D, Aboyans V, Windecker S, Aboyans V, Agewall S, Barbato E, Bueno H, Coca A, Collet JP, Coman IM, Dean V, Delgado V, Fitzsimons D, Gaemperli O, Hindricks G, Iung B, Jüni P, Katus HA, Knuuti J, Lancellotti P, Leclercq C, McDonagh T, Piepoli MF, Ponikowski P, Richter DJ, Roffi M, Shlyakhto E, Simpson IA, Zamorano JL, Kzhdryan HK, Mascherbauer J, Samadov F, Shumavets V, Camp GV, Lončar D, Lovric D, Georgiou GM, Linhartova K, Ihlemann N, Abdelhamid M, Pern T, Turpeinen A, Srbinovska-Kostovska E, Cohen A, Bakhutashvili Z, Ince H, Vavuranakis M, Temesvári A, Gudnason T, Mylotte D, Kuperstein R, Indolfi C, Pya Y, Bajraktari G, Kerimkulova A, Rudzitis A, Mizariene V, Lebrun F, Demarco DC, Oukerraj L, Bouma BJ, Steigen TK, Komar M, de Moura Branco LM, Popescu BA, Uspenskiy V, Foscoli M, Jovovic L, Simkova I, Bunc M, de Prada JAV, Stagmo M, Kaufmann BA, Mahdhaoui A, Bozkurt E, Nesukay E, Brecker SJD (2017) 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2786. https://doi.org/10.1093/eurheartj/ehx391

    Article  PubMed  Google Scholar 

  15. Lang RM, Badano LP, Mor-avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults : an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  Google Scholar 

  16. Gibson GJ, Whitelaw W, Siafakas N et al (2002) ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 166:518–624. https://doi.org/10.1164/rccm.166.4.518

    Article  Google Scholar 

  17. Fortin J, Habenbacher W, Heller A, Hacker A, Grüllenberger R, Innerhofer J, Passath H, Wagner C, Haitchi G, Flotzinger D, Pacher R, Wach P (2006) Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement. Comput Biol Med 36:1185–1203. https://doi.org/10.1016/j.compbiomed.2005.06.001

    CAS  Article  PubMed  Google Scholar 

  18. Bland J, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310. https://doi.org/10.1016/j.jsv.2006.09.024

    Article  Google Scholar 

  19. Linz D, Mahfoud F, Linz B, Hohl M, Schirmer SH, Wirth KJ, Böhm M (2014) Effect of obstructive respiratory events on blood pressure and renal perfusion in a pig model for sleep apnea. Am J Hypertens 27:1293–1300. https://doi.org/10.1093/ajh/hpu036

    CAS  Article  PubMed  Google Scholar 

  20. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med 8:597–619. https://doi.org/10.5664/jcsm.2172

    Article  PubMed  PubMed Central  Google Scholar 

  21. Davies RJO, Jenkins NE, Stradling JR (1994) Effect of measuring ambulatory blood pressure on sleep and on blood pressure during sleep. BMJ 308:820–823. https://doi.org/10.1136/bmj.308.6932.820

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, Rundle AG, Zammit GK, Malaspina D (2006) Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination Survey. Hypertension 47:833–839. https://doi.org/10.1161/01.HYP.0000217362.34748.e0

    CAS  Article  PubMed  Google Scholar 

  23. Gottlieb DJ, Redline S, Nieto FJ, Baldwin CM, Newman AB, Resnick HE, Punjabi NM (2006) Association of usual sleep duration with hypertension: the sleep heart health study. Sleep 29:1009–1014. https://doi.org/10.1093/sleep/29.8.1009

    Article  PubMed  Google Scholar 

  24. Naschitz JE, Bezobchuk S (2005) Pulse transit time by R-wave-gated infrared photoplethysmography: review. J Clin Monit Comput 18:333–342. https://doi.org/10.1007/s10877-005-4300-z

    Article  Google Scholar 

  25. Parati G, Stergiou GS, Asmar R et al (2010) European Society of Hypertension practice guidelines for home blood pressure monitoring. J Hum Hypertens 24:779–785. https://doi.org/10.1038/jhh.2010.54

    CAS  Article  PubMed  Google Scholar 

  26. Woolam GL, Schnur PL, Vallbona C, Hoff HE (1962) The pulse wave velocity as an early indicator of atherosclerosis in diabetic subjects. Circulation 25:533–539. https://doi.org/10.1161/01.CIR.25.3.533

    CAS  Article  PubMed  Google Scholar 

  27. Yin M, Nakayama M, Miyazaki S, Ishikawa K (2008) How much influence does inspiration have on pulse transit time in sleep apnea? Otolaryngol Head Neck Surg 138:619–625. https://doi.org/10.1016/j.otohns.2007.12.031

    Article  PubMed  Google Scholar 

  28. Bruner JM, Krenis LJ, Kunsman JM, Sherman AP (1981) Comparison of direct and indirect measuring arterial blood pressure. Med Instrum 15:11–21

    CAS  PubMed  Google Scholar 

  29. Roth S, Fox H, Fuchs U, Schulz U, Costard-Jackle A, Gummert JF, Horstkotte D, Oldenburg O, Bitter T (2018) Noninvasive pulse contour analysis for determination of cardiac output in patients with chronic heart failure. Clin Res Cardiol 107:395–404. https://doi.org/10.1007/s00392-017-1198-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Mister Christian Glatz’s and Mister Salvador Perez’s kind technical help in collecting our data.

Funding

This study has been supported by Else-Kröner-Fresenius Stiftung (Grant A109). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Spiesshoefer.

Ethics declarations

Conflict of interest

JS is supported by the Else-Kröner-Fresenius Stiftung (Grant A109) for this work and by Kommission für Innovative Medizinische Forschung an der Medizinischen Fakultät Münster (IMF Grant SP 11 18 15) outside this work. MB is supported by Sanofi Genzyme and Löwenstein Medical outside this work. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Ethical approval

The study protocol was approved by the local ethics committee (Ethikkommission der Ärtzekammer Westfalen Lippe) and the study was carried out in accordance with the Declaration of Helsinki.

Informed consent

All patients gave written informed consent to participate in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Fig. S1
figure 6

Differences in detecting changes in systolic blood pressure (BP) in healthy volunteers [A], patients with HFrEF [B] and patients with pulmonary artery hypertension (PAH) [C] (OM, oscillometric measurement; PTT, pulse transit time) (PNG 1557 kb)

Supplemental Fig. S2
figure 7

Differences in detecting changes in diastolic blood pressure (BP) in healthy volunteers [A], patients with HFrEF [B] and patients with PAH [C] (OM, oscillometric measurement; PTT, pulse transit time) (PNG 488 kb)

High Resolution Image (EPS 161 kb)

Hign Resolution Image (EPS 142 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becker, S., Spiesshoefer, J., Brix, T. et al. Validity of transit time–based blood pressure measurements in patients with and without heart failure or pulmonary arterial hypertension across different breathing maneuvers. Sleep Breath 24, 221–230 (2020). https://doi.org/10.1007/s11325-019-01848-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-019-01848-w

Keywords

  • Blood pressure monitoring
  • Heart failure
  • Pulse transit time
  • Sleep-disordered breathing