The correct measurement of oxygen saturation at high altitude

Abstract

Background

Compared to measurements at sea level, measurement of oxygen saturation by pulse oximetry (SpO2) at altitude differs fundamentally because of the cyclical course of SpO2, caused by periodic breathing. Therefore, the determination of a representative SpO2 value is difficult. In the literature, recommendations for a standardized measurement procedure are missing; different studies measure SpO2 in different ways.

Key question

Does the visually determined SpO2 value correlate with the actual average of the measurement interval?

Methods

Four participants of an expedition (6013 m; Pakistan), familiar with pulse oximetry at altitude, wrote down the representative value of the measurement interval of 3 min (SpO2visual) according to their individual observation. The used pulse oximeter saved the value for SpO2 every 4 s. Based on this, the calculated mean (SpO2memory) was compared to SpO2visual after finishing the expedition (128 measurements > 2500 m).

Results

The spread of the single values within the measurement interval is high (in single cases up to 17%-points) in case of insufficient acclimatization. With increasing acclimatization, the measured values stabilize. SpO2visual differs only marginally (− 0.4%-points; ± 0.8) compared to SpO2memory.

Conclusions

The correct pulse oximetric determination of SpO2 at high altitude requires a standardized measurement procedure; the investigator is familiar and trained. Anyway, the measurements have to be done in the continuous mode of the pulse oximeter over a sufficient timeframe (3 SpO2-fluctuation cycles; 2–3 min). We recommend to record the maximum and the minimum value of the measurement interval and to use a pulse oximeter device with memory function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Luks AM, Swenson ER (2011) Pulse oximetry at high altitude. High Alt Med Biol 12(2):109–119. https://doi.org/10.1089/ham.2011.0013

    Article  PubMed  Google Scholar 

  2. 2.

    Saito S, Shimada H, Imai T, Futamata Y, Yamamori K (1995) Estimation of the degree of acclimatization to high altitude by a rapid and simple physiological examination. Int Arch Occup Environ Health 67(5):347–351

    CAS  Article  Google Scholar 

  3. 3.

    Bärtsch P (2005) Pulsoximetrie und akute Bergkrankheit. Flug- und Reisemedizin 44:22–23

    Google Scholar 

  4. 4.

    Basnyat B (2014) Pro: pulse oximetry is useful in predicting acute mountain sickness. High Alt Med Biol 15(4):440–441

    Article  Google Scholar 

  5. 5.

    Windsor JS (2012) Pulse oximetry and predicting acute mountain sickness: are we asking the right questions? Wilderness Environ Med 23(2):112–113

    Article  Google Scholar 

  6. 6.

    Windsor JS, Rodway GW (2014) Con: pulse oximetry is useful in predicting acute mountain sickness. High Alt Med Biol 15(4):442–443

    Article  Google Scholar 

  7. 7.

    Küpper T, Schöffl V, Netzer N (2008) Cheyne stokes breathing at high altitude: a helpful response or a troublemaker? Sleep Breath 12(2):123–127. https://doi.org/10.1007/s11325-007-0155-5

    Article  PubMed  Google Scholar 

  8. 8.

    Cristancho E, Riveros A, Sanchez A, Penuela O, Böning D (2016) Diurnal changes of arterial oxygen saturation and erythropoietin concentration in male and female highlanders. Physiol Rep 4(17):e12901. https://doi.org/10.14814/phy2.12901

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Tannheimer M, van der Spek R, Brenner F, Lechner R, Steinacker JM, Treff G (2017) Oxygen saturation increases over the course of the night in mountaineers at high altitude (3050–6354 m). J Travel Med 24. https://doi.org/10.1093/jtm/tax041

  10. 10.

    O'Connor T, Dubowitz G, Bickler PE (2004) Pulse oximetry in the diagnosis of acute mountain sickness. High Alt Med Biol 5(3):341–348. https://doi.org/10.1089/ham.2004.5.341

    Article  PubMed  Google Scholar 

  11. 11.

    Wagner DR, Knott JR, Fry JP (2012) Oximetry fails to predict acute mountain sickness or summit success during a rapid ascent to 5640 meters. Wilderness Environ Med 23(2):114–121. https://doi.org/10.1016/j.wem.2012.02.015

    Article  PubMed  Google Scholar 

  12. 12.

    Burtscher M, Flatz M, Faulhaber M (2004) Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt Med Biol 5(3):335–340. https://doi.org/10.1089/ham.2004.5.335

    Article  PubMed  Google Scholar 

  13. 13.

    Karinen HM, Peltonen JE, Kahonen M, Tikkanen HO (2010) Prediction of acute mountain sickness by monitoring arterial oxygen saturation during ascent. High Alt Med Biol 11(4):325–332. https://doi.org/10.1089/ham.2009.1060

    Article  PubMed  Google Scholar 

  14. 14.

    Roach RC, Greene ER, Schoene RB, Hackett PH (1998) Arterial oxygen saturation for prediction of acute mountain sickness. Aviat Space Environ Med 69(12):1182–1185

    CAS  PubMed  Google Scholar 

  15. 15.

    Tannheimer M, Thomas A, Gerngross H (2002) Oxygen saturation course and altitude symptomatology during an expedition to broad peak (8047 m). Int J Sports Med 23(5):329–335. https://doi.org/10.1055/s-2002-33144

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Faulhaber M, Wille M, Gatterer H, Heinrich D, Burtscher M (2014) Resting arterial oxygen saturation and breathing frequency as predictors for acute mountain sickness development: a prospective cohort study. Sleep Breath 18(3):669–674. https://doi.org/10.1007/s11325-013-0932-2

    Article  PubMed  Google Scholar 

  17. 17.

    Chen H-C, Lin W-L, Wu J-Y, Wang S-H, Chiu T-F, Weng Y-M, Hsu T-Y, Wu M-H (2012) Change in oxygen saturation does not predict acute mountain sickness on Jade Mountain. Wilderness Environ Med 23(2):122–127

    Article  Google Scholar 

  18. 18.

    Roeggla G, Roeggla M, Podolsky A, Wagner A, Laggner AN (1996) How can acute mountain sickness be quantified at moderate altitude? [see comments]. J R Soc Med 89(3):141–143

    CAS  Article  Google Scholar 

  19. 19.

    Tannheimer M, Hornung K, Gasche M, Kühlmuss B, Müller M, Welsch H, Landgraf K, Guger C, Schmidt R, Steinacker JM (2012) Decrease of asymmetric dimethylarginine predicts acute mountain sickness. J Travel Med 19(6):338–343. https://doi.org/10.1111/j.1708-8305.2012.00652.x

    Article  PubMed  Google Scholar 

  20. 20.

    Tannheimer M, Albertini N, Ulmer HV, Thomas A, Engelhardt M, Schmidt R (2009) Testing individual risk of acute mountain sickness at greater altitudes. Mil Med 174(4):363–369

    Article  Google Scholar 

  21. 21.

    Nonin_Medical_Inc (2014) PalmSAT 2500 Series. Availabel at: https://www.nonin.com/wp-content/uploads/2018/09/Operators-Manual-2500.pdf

  22. 22.

    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    CAS  Article  Google Scholar 

  23. 23.

    Mandolesi G, Avancini G, Bartesaghi M, Bernardi E, Pomidori L, Cogo A (2014) Long-term monitoring of oxygen saturation at altitude can be useful in predicting the subsequent development of moderate-to-severe acute mountain sickness. Wilderness Environ Med 25(4):384–391

    Article  Google Scholar 

  24. 24.

    Deutsche Forschungsgemeinschaft (1998) Recommendations of the commission on professional self-regulation in science: proposals for safeguarding good scientific practice. Available at: http://www.dfg.de/aktuelles_presse/reden_stellungnahmen/download/self_regulation_98.pdf (p.8). Accessed Sept 2013

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Markus Tannheimer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Recommendations of the Commission on Professional Self-Regulation in Science (DFG: Deutsche Forschungsgemeinschaft) [24] and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tannheimer, M., Lechner, R. The correct measurement of oxygen saturation at high altitude. Sleep Breath 23, 1101–1106 (2019). https://doi.org/10.1007/s11325-019-01784-9

Download citation

Keywords

  • Pulse oximetry
  • Oxygen saturation
  • High altitude
  • Acclimatization
  • High altitude illness
  • AMS