Skip to main content

Advertisement

Log in

Expression profile of long non-coding RNAs in rat models of OSA-induced cardiovascular disease: new insight into pathogenesis

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Long non-coding RNAs (lncRNAs) are a recently identified class of regulatory molecules involved in the regulation of numerous biological processes, but their functions in a rat model of chronic intermittent hypoxia (CIH) remain largely unknown. Therefore, for further investigation, we aimed to explore lncRNA expression profiles and reveal their potential functional roles in rat models of CIH.

Methods

We used a well-established CIH rat model and conducted lncRNA microarray experiments on the heart samples of rats with CIH and under normoxia control. Differentially expressed lncRNAs and mRNAs were identified via fold-change filtering and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bioinformatics analyses were applied to reveal the potential roles of key lncRNAs. Co-expression analysis was conducted to determine the transcriptional regulatory relationship of lncRNAs and mRNAs between the two groups.

Results

Our data indicated that 157 lncRNAs and 319 mRNAs were upregulated, while 132 lncRNAs and 428 mRNAs were downregulated in the rat model of CIH compared with sham control. Pathway analyses showed that 31 pathways involved in upregulated transcripts and 28 pathways involved in downregulated transcripts. Co-expression networks were also constructed to explore the potential roles of differentially expressed lncRNAs on mRNAs. LncRNAs, namely, XR_596701, XR_344474, XR_600374, ENSRNOT00000065561, XR_590196, and XR_597099, were validated by the use of qRT-PCR.

Conclusions

The present study first revealed lncRNAs expression profiles in a rat model of CIH, providing new insight into the pathogenesis of obstructive sleep apnea-induced cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. LANCET 373:82–93

    Article  PubMed  Google Scholar 

  2. Muxfeldt ES, Margallo VS, Guimaraes GM, Salles GF (2014) Prevalence and associated factors of obstructive sleep apnea in patients with resistant hypertension. Am J Hypertens 27:1069–1078

    Article  CAS  PubMed  Google Scholar 

  3. Peppard PE, Young T, Palta M, Skatrud J (2000) Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 342:1378–1384

    Article  CAS  PubMed  Google Scholar 

  4. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. LANCET 365:1046–1053

    Article  PubMed  Google Scholar 

  5. Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165:934–939

    Article  PubMed  Google Scholar 

  6. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667

    Article  CAS  PubMed  Google Scholar 

  7. Schulz R, Mahmoudi S, Hattar K, Sibelius U, Olschewski H, Mayer K, Seeger W, Grimminger F (2000) Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med 162:566–570

    Article  CAS  PubMed  Google Scholar 

  8. Somers VK, Dyken ME, Clary MP, Abboud FM (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96:1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schulz R, Seeger W, Fegbeutel C, Husken H, Bodeker RH, Tillmanns H, Grebe M (2005) Changes in extracranial arteries in obstructive sleep apnoea. Eur Respir J 25:69–74

    Article  CAS  PubMed  Google Scholar 

  10. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, O'Connor GT, Boland LL, Schwartz JE, Samet JM (2001) Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 163:19–25

    Article  CAS  PubMed  Google Scholar 

  11. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. NATURE 458:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  14. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. NATURE 477:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. CELL 136:629–641

    Article  CAS  PubMed  Google Scholar 

  16. Harries LW (2012) Long non-coding RNAs and human disease. Biochem Soc Trans 40:902–906

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Ma X, Yan L, Wang T, Wen J, Mi G (2017) LncRNA SNHG1 negatively regulates miR-145a-5p to enhance NUAK1 expression and promote cancer cell metastasis and invasion in nasopharyngeal carcinoma. J Cell Physiol. https://doi.org/10.1002/jcp.26340

  18. Lai MC, Lin JG, Pai PY, Lai MH, Lin YM, Yeh YL, Cheng SM, Liu YF, Huang CY, Lee SD (2014) Protective effect of salidroside on cardiac apoptosis in mice with chronic intermittent hypoxia. Int J Cardiol 174:565–573

    Article  PubMed  Google Scholar 

  19. Li S, Feng J, Wei S, Qian X, Cao J, Chen B (2016) Delayed neutrophil apoptosis mediates intermittent hypoxia-induced progressive heart failure in pressure-overloaded rats. Sleep Breath 20:95–102

    Article  PubMed  Google Scholar 

  20. Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116:737–750

    Article  CAS  PubMed  Google Scholar 

  21. Dumitrascu R, Heitmann J, Seeger W, Weissmann N, Schulz R (2013) Obstructive sleep apnea, oxidative stress and cardiovascular disease: lessons from animal studies. Oxidative Med Cell Longev 2013:234631

    Article  CAS  Google Scholar 

  22. Drager LF, Yao Q, Hernandez KL, Shin MK, Bevans-Fonti S, Gay J, Sussan TE, Jun JC, Myers AC, Olivecrona G, Schwartz AR, Halberg N, Scherer PE, Semenza GL, Powell DR, Polotsky VY (2013) Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4. Am J Respir Crit Care Med 188:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Almendros I, Farre R, Torres M, Bonsignore MR, Dalmases M, Ramirez J, Navajas D, Montserrat JM (2011) Early and mid-term effects of obstructive apneas in myocardial injury and inflammation. Sleep Med 12:1037–1040

    Article  PubMed  Google Scholar 

  24. Yang D, Liu Z, Luo Q (2013) Plasma ghrelin and pro-inflammatory markers in patients with obstructive sleep apnea and stable coronary heart disease. Med Sci Monit 19:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clark BS, Blackshaw S (2014) Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 5:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is funded by the National Natural Science Foundation of China (grant number: 81370182 and 81870074), Quanzhou Science and Technology Projects (grant number: 2018N007S), and Startup Fund for Scientific Research, Fujian Medical University (grant number: 2017XQ1102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qichang Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Lin, G., Huang, J. et al. Expression profile of long non-coding RNAs in rat models of OSA-induced cardiovascular disease: new insight into pathogenesis. Sleep Breath 23, 795–804 (2019). https://doi.org/10.1007/s11325-018-1753-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-018-1753-0

Keywords

Navigation