Skip to main content

Advertisement

Log in

The effect of chronic intermittent hypoxia on respiratory sensitivity to morphine in rats

  • Hypoxia • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Chronic intermittent hypoxia (CIH) is a characteristic of obstructive sleep apnea syndromes (OSAs). Recurrent hypoxia during the developmental period increases respiratory sensitivity to subsequent administration of opioids. However, it is unknown whether CIH affects respiratory sensitivity to opioids in adults. Our study aimed to assess the changes in respiratory sensitivity to morphine (MOR) under CIH and to explore the possible mechanisms in an adult rat model.

Methods

We applied CIH in adult Sprague-Dawley rats to simulate the hypoxia condition caused by OSAs. An atmosphere with room air was applied as the control environment. After 4 weeks of CIH, MOR was administered. Tests of respiratory function, including measurement of tidal volume (Vt), minute ventilation (MV), tidal volume divided by inspiratory time (Vt/Ti), and respiratory frequency (RF), were then performed. HIF-1α, δ-OR, and μ-OR expressions in the medulla were measured.

Results

After MOR administration, Vt, MV, RF, and Vt/Ti decreased in both the CIH and control groups. MOR caused a more profound depression of MV, RF, Vt, and Vt/Ti in CIH + MOR group compared with C + MOR group. Administration of either μ-OR-specific antagonist, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, or δ-OR-specific antagonist, naltrindole, attenuated the depression of Vt, MV, RF, and Vt/Ti. Intermittent hypoxia markedly increased the expression of δ-OR and μ-OR in the medullas of rats. HIF-1α protein expression increased significantly, and HIF-1α mRNA levels remained unchanged.

Conclusions

CIH increases the respiratory sensitivity of rats to MOR by upregulating expression of μ-OR and δ-OR in the medulla, which might be associated with increased levels of HIF-1α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azagra-Calero E, Espinar-Escalona E, Barrera-Mora JM, Llamas-Carreras JM, Solano-Reina E (2012) Obstructive sleep apnea syndrome (OSAS). Review of the literature. Med Oral Pathol Oral Cir Bucal 17:e925–e929

    Article  Google Scholar 

  2. Punjabi NM (2008) The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5:136–143

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lai MC, Lin JG, Pai PY, Lai MH, Lin YM, Yeh YL, Cheng SM, Liu YF, Huang CY, Lee SD (2014) Protective effect of salidroside on cardiac apoptosis in mice with chronic intermittent hypoxia. Int J Cardiol 174:565–573

    Article  PubMed  Google Scholar 

  4. Lee SD, Kuo WW, Lin JA, Chu YF, Wang CK, Yeh YL, Wang SG, Liu JY, Chang MH, Huang CY (2007) Effects of long-term intermittent hypoxia on mitochondrial and Fas death receptor dependent apoptotic pathways in rat hearts. Int J Cardiol 116:348–356

    Article  PubMed  Google Scholar 

  5. Waters KA, McBrien F, Stewart P, Hinder M, Wharton S (2002) Effects of OSA, inhalational anesthesia, and fentanyl on the airway and ventilation of children. J Appl Physiol 92:1987–1994

    Article  CAS  PubMed  Google Scholar 

  6. Moss IR, Brown KA, Laferrière A (2006) Recurrent hypoxia in rats during development increases subsequent respiratory sensitivity to fentanyl. Anesthesiology 105:715–718

    Article  PubMed  Google Scholar 

  7. Peng PH, Huang HS, Lee YJ (2009) Novel role for the δ-opioid receptor in hypoxic preconditioning in rat retinas. J Neur 108:741–754

    CAS  Google Scholar 

  8. Wu J, Li P, Wu XY, Chen WM (2015) Chronic intermittent hypoxia decreases pain sensitivity and increases the expression of HIF1α and opioid receptors in experimental rats. Sleep Breath 19:561–568

    Article  PubMed  Google Scholar 

  9. Boland LL, Shahar E, Iber C, Knopman DS, Kuo TF, Nieto FJ (2002) Measures of cognitive function in persons with varying degrees of sleep-disordered breathing: the Sleep Heart Health Study. J Sleep Res 11:265–272

    Article  PubMed  Google Scholar 

  10. McGuire M, Zhang Y, White D, Ling L (2002) Effect of episodic episode number and severity on ventilatory long-term facilitation in awake rats. J Appl Physiol 93:2155–2161

    Article  PubMed  Google Scholar 

  11. Kawaraguchi Y, Sasaoka N, Kawaguchi M, Inoue S, Hayashi H, Konishi N, Furuya H (2008) Effect of continuous morphine infusion on hypoxic-ischaemic brain damage of neonatal rats. Acta Anaesthesiol Scand 52:1111–1115

    Article  CAS  PubMed  Google Scholar 

  12. McLaughlin CR, Lichtman AH, Fanselow MS, Cramer CP (1990) Tonic nociception in neonatal rats. Pharmacol Biochem Behav 36:859–862

    Article  CAS  PubMed  Google Scholar 

  13. Moss IR, Bélisle M, Laferrière A (2006) Long term recurrent hypoxia in developing rat attenuates respiratory responses to subsequent acute hypoxia. Pediatr Res 59:525–530

    Article  PubMed  Google Scholar 

  14. Laferrière A, Colin-Durand J, Moss IR (2005) Ontogeny of respiratory sensitivity and tolerance to the mu-opioid agonist fentanyl in rat. Developmental Brain Res 156:210–217

    Article  Google Scholar 

  15. Bartlett D, Tenney SM (1970) Control of breathing in experimental anemia. Respir Physiol 10:384–395

    Article  PubMed  Google Scholar 

  16. Kim JA, Lee JJ (2006) Preoperative predictors of difficult intubation in patients with obstructive sleep apnea syndrome. Can J Anaesth 53:393–397

    Article  CAS  PubMed  Google Scholar 

  17. Ydens L, Yu S (2006) Practice guidelines for the perioperative management of patients with obstructive sleep apnea: a report by the American society of Anesthiologists task force on perioperative management of patients with obstructive sleep apnea. Anesthesiology 104:1081–1093

    Article  PubMed  Google Scholar 

  18. Mc Nicholas WT, Ryan S (2006) Obstructive sleep apnea syndrome: translating science to clinical practice. Respirology 11:136–144

    Article  Google Scholar 

  19. Brown KA, Laferrière A, Lakheeram I, Moss IR (2006) Recurrent hypoxemia in children is associated with increased analgesic sensitivity to opiates. Anesthesiology 105:665–669

    Article  PubMed  Google Scholar 

  20. Dahan A, Aarts L, Smith TW (2010) Incidence, reversal, and prevention of opioid-induced respiratory depression. Anesthesiology 112:226–238

    Article  PubMed  Google Scholar 

  21. Grossmann W, Jurna I (1974) Proceedings: the effect of morphine on neuronal membranes. Naunyn Schmiedebergs Arch Pharmacol; 282(suppl) R228:367–77

  22. Dahan A, Sarton E, Teppema L, Olievier C, Nieuwenhuijs D, Matthes HWD, Kieffer BL (2001) Anesthetic potency and influence of morphine and sevoflurane on respiration in μ-opioid receptor knockout mice. Anesthesiology 94:824–832

    Article  CAS  PubMed  Google Scholar 

  23. Romberg R, Sarton E, Teppema L, Matthes H, Kieffer B, Dahan A (2003) Comparison of morphine-6-glucuronide and morphine on respiratory depressant and antinociceptive responses in wild type and μ-opioid receptor deficient mice. Br J Anaesth 91:862–870

    Article  CAS  PubMed  Google Scholar 

  24. Cook RJ, Karch C, Nahar P, Rivera A, Ko JL (2010) Effects of desferoxamine-induced hypoxia on neuronal human mu-opioid receptor gene expression. Biochem Biophys Res Commun 398:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mustapic S, Radocaj T, Sanchez A, Dogas Z, Stucke AG, Hopp FA, Stuth EA, Zuperku EJ (2010) Clinically relevant infusion rates of mu-opioid agonist remifentanil cause bradypnea in decerebrate dogs but not via direct effects in the pre-Bötzinger complex region. J Neurophysiol 103:409–418

    Article  CAS  PubMed  Google Scholar 

  26. Hurle MA, Mediavilla A, Florez J (1985) Differential respiratory patterns induced by opioids applied to the ventral medullary and dorsal pontine surfaces of cats. Neuropharmacology 24:597–606

    Article  CAS  PubMed  Google Scholar 

  27. Lonergan T, Goodchild AK (2003) Presynaptic opioid receptors differentially modulate rhythm and pattern generation in the ventral respiratory group of the rat. Neuroscience 121:959–973

    Article  CAS  PubMed  Google Scholar 

  28. Freye E, Latasch L, Portoghese PS (1992) δ-OR is involved in sufentanil-induced respiratory depression - opioid subreceptors mediate different effects. Eur J Anaesthesiol 9:457–462

    CAS  PubMed  Google Scholar 

  29. Chen Z, Hedner J, Hedner T (1996) Substance P-induced respiratory excitation is blunted by delta-receptor specific opioids in the rat medulla oblongata. Acta Physiol Scand 157:165–173

    Article  CAS  PubMed  Google Scholar 

  30. Haddad GG, Schaeffer JI, Chang KJ (1984) Opposite effects of the δ- and μ-opioid receptor agonists on ventilation in conscious adult dogs. Brain Res 323:73–82

    Article  CAS  PubMed  Google Scholar 

  31. Mutolo D, Bongianni F, Einum J, Dubuc R, Pantaleo T (2007) Opioid-induced depression in the lamprey respiratory network. Neuroscience 150:720–729

    Article  CAS  PubMed  Google Scholar 

  32. Johnson SM, Kinney ME, Wiegel LM (2008) Inhibitory and excitatory effects of micro-, delta-, and kappa-opioid receptor activation on breathing in awake turtles, Trachemys scripta. Am J Physiol Regul Integr Comp Physiol 295:R1599–R1612

    Article  CAS  PubMed  Google Scholar 

  33. Su YF, McNutt RW, Chang KJ (1998) Delta-opioid ligands reverse alfentanil-induced respiratory depression but not antinociception. J Pharmacol Exp Ther 287:815–823

    CAS  PubMed  Google Scholar 

  34. Verborgh C, Meert TF (1999) The effects of intravenous naltrindole and naltrindole 5'-isothiocyanate on sufentanil-induced respiratory depression and antinociception in rats. Pharmacol Biochem Behav 63:175–183

    Article  CAS  PubMed  Google Scholar 

  35. Gao CJ, Niu L, Ren PC, Wang W, Zhu C, Li YQ, Chai W, Sun XD (2012) Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardial arrest through regulation of delta opiod receptor system. Neuroscience 202:352–362

    Article  CAS  PubMed  Google Scholar 

  36. Vedunova MV, Mishchenko TA, Mitroshina EV, Mukhina IV (2015) TrkB-mediated neuroprotective and antihypoxic properties of brain-derived neurotrophic factor. Oxidative Med Cell Longev 2015:453901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuying Wu.

Ethics declarations

Conflict of interest

None.

Funding

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, P. & Wu, X. The effect of chronic intermittent hypoxia on respiratory sensitivity to morphine in rats. Sleep Breath 21, 227–233 (2017). https://doi.org/10.1007/s11325-016-1448-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-016-1448-3

Keywords

Navigation