Skip to main content
Log in

Chronic intermittent hypoxia decreases pain sensitivity and increases the expression of HIF1α and opioid receptors in experimental rats

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

The present study was designed to determine the effects of chronic intermittent hypoxia (CIH) on pain sensitivity and the changes in the expression of delta-opioid receptor (DOR), mu-opioid receptor (MOR), and hypoxia-inducible factor (HIF)-1α and their relationship with pain sensitivity under hypoxia.

Methods

CIH was employed to model the low oxygen condition in obstructive sleep apnea (OSA). Normal oxygen condition was used as control. After 1-, 2-, 3-, and 4-week hypoxia, behavioral tests, including paw-withdrawal latency (PWL) and paw-withdrawal threshold (PWT), were performed. The expressions of DOR, MOR and HIF-1α in cortex were analyzed by real-time PCR and Western blotting.

Results

HIF-1α expression was significantly upregulated after 1–4 weeks of hypoxia at both mRNA and protein levels, compared with the controls (P < 0.05). Both PWL and PWT were significantly enhanced in the rats following 3 and 4 weeks of hypoxia (P < 0.05). DOR and MOR expression was significantly upregulated at both mRNA and protein levels after 3 and 4 weeks of hypoxia (P < 0.05), which corresponded to the behavioral changes.

Conclusions

CIH decreases pain sensitivity in rats, possibly through activating HIF-1α and increasing MOR and DOR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Azagra-Calero E, Espinar-Escalona E, Barrera-Mora JM, Llamas-Carreras JM, Solano-Reina E (2012) Obstructive sleep apnea syndrome (OSAS). Review of the literature. Med Oral Pathol Oral Cir Bucal 17(6):e925–e929

    Article  Google Scholar 

  2. Punjabi NM (2008) The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5(2):136–143. doi:10.1513/pats.200709-155MG

    Article  PubMed Central  PubMed  Google Scholar 

  3. Budhiraja R, Budhiraja P, Quan SF (2010) Sleep-disordered breathing and cardiovascular disorders. Respir Care 55(10):1322–1332, discussion 1330-1322

    PubMed Central  PubMed  Google Scholar 

  4. Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V (2005) Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 353(19):2034–2041. doi:10.1056/NEJMoa043104

    Article  CAS  PubMed  Google Scholar 

  5. Brown KA, Laferriere A, Moss IR (2004) Recurrent hypoxemia in young children with obstructive sleep apnea is associated with reduced opioid requirement for analgesia. Anesthesiology 100(4):806–810, discussion 805A

    Article  CAS  PubMed  Google Scholar 

  6. Doufas AG, Tian L, Davies MF, Warby SC (2013) Nocturnal intermittent hypoxia is independently associated with pain in subjects suffering from sleep-disordered breathing. Anesthesiology 119(5):1149–1162. doi:10.1097/ALN.0b013e3182a951fc

    Article  CAS  PubMed  Google Scholar 

  7. Doufas AG, Tian L, Padrez KA, Suwanprathes P, Cardell JA, Maecker HT, Panousis P (2013) Experimental pain and opioid analgesia in volunteers at high risk for obstructive sleep apnea. PLoS One 8(1):e54807. doi:10.1371/journal.pone.0054807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Smith MT, Edwards RR, McCann UD, Haythornthwaite JA (2007) The effects of sleep deprivation on pain inhibition and spontaneous pain in women. Sleep 30(4):494–505

    PubMed  Google Scholar 

  9. Haack M, Lee E, Cohen DA, Mullington JM (2009) Activation of the prostaglandin system in response to sleep loss in healthy humans: potential mediator of increased spontaneous pain. Pain 145(1–2):136–141. doi:10.1016/j.pain.2009.05.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Smith MT, Klick B, Kozachik S, Edwards RE, Holavanahalli R, Wiechman S, Blakeney P, Lezotte D, Fauerbach JA (2008) Sleep onset insomnia symptoms during hospitalization for major burn injury predict chronic pain. Pain 138(3):497–506. doi:10.1016/j.pain.2008.01.028

    Article  PubMed Central  PubMed  Google Scholar 

  11. Edwards RR, Almeida DM, Klick B, Haythornthwaite JA, Smith MT (2008) Duration of sleep contributes to next-day pain report in the general population. Pain 137(1):202–207. doi:10.1016/j.pain.2008.01.025

    Article  PubMed Central  PubMed  Google Scholar 

  12. Krueger JM, Clinton JM, Winters BD, Zielinski MR, Taishi P, Jewett KA, Davis CJ (2011) Involvement of cytokines in slow wave sleep. Prog Brain Res 193:39–47. doi:10.1016/b978-0-444-53839-0.00003-x

    Article  PubMed Central  PubMed  Google Scholar 

  13. Chennaoui M, Sauvet F, Drogou C, Van Beers P, Langrume C, Guillard M, Gourby B, Bourrilhon C, Florence G, Gomez-Merino D (2011) Effect of one night of sleep loss on changes in tumor necrosis factor alpha (TNF-alpha) levels in healthy men. Cytokine 56(2):318–324. doi:10.1016/j.cyto.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  14. Frey DJ, Fleshner M, Wright KP Jr (2007) The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain Behav Immun 21(8):1050–1057. doi:10.1016/j.bbi.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  15. Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28(20):5189–5194. doi:10.1523/jneurosci.3338-07.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Angst MS, Phillips NG, Drover DR, Tingle M, Ray A, Swan GE, Lazzeroni LC, Clark JD (2012) Pain sensitivity and opioid analgesia: a pharmacogenomic twin study. Pain 153(7):1397–1409. doi:10.1016/j.pain.2012.02.022

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ross JR, Rutter D, Welsh K, Joel SP, Goller K, Wells AU, Du Bois R, Riley J (2005) Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J 5(5):324–336. doi:10.1038/sj.tpj.6500327

    Article  CAS  PubMed  Google Scholar 

  18. Raehal KM, Bohn LM (2005) Mu opioid receptor regulation and opiate responsiveness. AAPS J 7(3):E587–E591. doi:10.1208/aapsj070360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shang J, Yang YY, Guo XL, Liu HG (2013) Ang II type 1 receptor expression in rat aorta exposed to chronic intermittent hypoxia: effects of p38MAPK and ERK1/2 signaling. Chin Med J 126(17):3264–3269

    CAS  PubMed  Google Scholar 

  20. Wang X, Traub RJ, Murphy AZ (2006) Persistent pain model reveals sex difference in morphine potency. Am J Physiol Regul Integr Comp Physiol 291(2):R300–R306. doi:10.1152/ajpregu.00022.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kaufmann D, Yagen B, Minert A, Tal M, Devor M, Bialer M (2008) Evaluation of the enantioselective antiallodynic and pharmacokinetic profile of propylisopropylacetamide, a chiral isomer of valproic acid amide. Neuropharmacology 54(4):699–707. doi:10.1016/j.neuropharm.2007.11.020

    Article  CAS  PubMed  Google Scholar 

  22. Landsberg R, Friedman M, Ascher-Landsberg J (2001) Treatment of hypoxemia in obstructive sleep apnea. Am J Rhinol 15(5):311–313

    CAS  PubMed  Google Scholar 

  23. Bosc LV, Resta T, Walker B, Kanagy NL (2010) Mechanisms of intermittent hypoxia induced hypertension. J Cell Mol Med 14(1–2):3–17. doi:10.1111/j.1582-4934.2009.00929.x

    Article  PubMed  Google Scholar 

  24. Khalid I, Roehrs TA, Hudgel DW, Roth T (2011) Continuous positive airway pressure in severe obstructive sleep apnea reduces pain sensitivity. Sleep 34(12):1687–1691. doi:10.5665/sleep.1436

    PubMed Central  PubMed  Google Scholar 

  25. Bouquet F, Ousset M, Biard D, Fallone F, Dauvillier S, Frit P, Salles B, Muller C (2011) A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. J Cell Sci 124(Pt 11):1943–1951. doi:10.1242/jcs.078030

    Article  CAS  PubMed  Google Scholar 

  26. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70(5):1469–1480. doi:10.1124/mol.106.027029

    Article  CAS  PubMed  Google Scholar 

  27. Baird NA, Turnbull DW, Johnson EA (2006) Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J Biol Chem 281(50):38675–38681. doi:10.1074/jbc.M608013200

    Article  CAS  PubMed  Google Scholar 

  28. Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI (2009) Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 32(4):447–470

    PubMed Central  PubMed  Google Scholar 

  29. Lavie L (2003) Obstructive sleep apnoea syndrome—an oxidative stress disorder. Sleep Med Rev 7(1):35–51

    Article  PubMed  Google Scholar 

  30. Brown KA, Laferriere A, Lakheeram I, Moss IR (2006) Recurrent hypoxemia in children is associated with increased analgesic sensitivity to opiates. Anesthesiology 105(4):665–669

    Article  PubMed  Google Scholar 

  31. Sato H, Droney J, Ross J, Olesen AE, Staahl C, Andresen T, Branford R, Riley J, Arendt-Nielsen L, Drewes AM (2013) Gender, variation in opioid receptor genes and sensitivity to experimental pain. Mol Pain 9:20. doi:10.1186/1744-8069-9-20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Martin M, Matifas A, Maldonado R, Kieffer BL (2003) Acute antinociceptive responses in single and combinatorial opioid receptor knockout mice: distinct mu, delta and kappa tones. Eur J Neurosci 17(4):701–708

    Article  PubMed  Google Scholar 

  33. Gaveriaux-Ruff C, Kieffer BL (2002) Opioid receptor genes inactivated in mice: the highlights. Neuropeptides 36(2–3):62–71

    Article  CAS  PubMed  Google Scholar 

  34. Nadal X, Banos JE, Kieffer BL, Maldonado R (2006) Neuropathic pain is enhanced in delta-opioid receptor knockout mice. Eur J Neurosci 23(3):830–834. doi:10.1111/j.1460-9568.2006.04569.x

    Article  PubMed  Google Scholar 

  35. Simonin F, Valverde O, Smadja C, Slowe S, Kitchen I, Dierich A, Le Meur M, Roques BP, Maldonado R, Kieffer BL (1998) Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J 17(4):886–897. doi:10.1093/emboj/17.4.886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Contributors

All the authors participated in the design of the study. Jian Wu carried out the western blot, rtPCR studies and performed the statistical analysis. Jian Wu and Peng Li were responsible for animal care and carried out the pain sensitivity test. Peng Li participated in the draft the manuscript. All the authors read and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, P., Wu, X. et al. Chronic intermittent hypoxia decreases pain sensitivity and increases the expression of HIF1α and opioid receptors in experimental rats. Sleep Breath 19, 561–568 (2015). https://doi.org/10.1007/s11325-014-1047-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-014-1047-0

Keywords

Navigation