Skip to main content

Advertisement

Log in

Hypoxia—implications for pharmaceutical developments

  • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Cells sense oxygen availability using not only the absolute value for cellular oxygen in regard to its energetic and metabolic functions, but also the gradient from the cell surface to the lowest levels in the mitochondria. Signals are used for regulatory purposes locally as well as in the generation of cellular, tissue, and humoral remodeling. Lowered oxygen availability (hypoxia) is theoretically important in the consideration of pharmacology because (1) hypoxia can alter cellular function and thereby the therapeutic effectiveness of the agent, (2) therapeutic agents may potentiate or protect against hypoxia-induced pathology, (3) hypoxic conditions may potentiate or mitigate drug-induced toxicity, (4) hypoxia may alter drug metabolism and thereby therapeutic effectiveness, and (5) therapeutic agents might alter the relative coupling of blood flow and energy metabolism in an organ. The prototypic biochemical effect of hypoxia is related to its known role as a cofactor in a number of enzymatic reactions, e.g., oxidases and oxygenases, which are affected independently from the bioenergetic effect of low oxygen on energetic functions. The cytochrome P-450 family of enzymes is another example. Here, there is a direct effect of oxygen availability on the conformation of the enzyme, thereby altering the metabolism of drug substrates. Indirectly, the NADH/NAD+ ratio is increased with 10% inspired oxygen, leading not only to reduced oxidation of ethanol but also to reduction of azo- and nitro-compounds to amines and disulfides to sulfhydryls. With chronic hypoxia, many of these processes are reversed, suggesting that hypoxia induces the drug-metabolizing systems. Support for this comes from observations that hypoxia can induce the hypoxic inducible factors which in turn alters transcription and function of some but not all cytochrome P-450 isoforms. Hypoxia is identified as a cofactor in cancer expression and metastatic potential. Thus, the effects of hypoxia play an important role in pharmacology, and the signaling pathways that are affected by hypoxia could become new targets for novel therapy or avenues for prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koch LG, Britton SL (2008) Aerobic metabolism underlies complexity and capacity. J Physiol 586:83–95

    Article  CAS  PubMed  Google Scholar 

  2. Britton SL, Koch LG (2005) Animal models of complex diseases: an initial strategy. IUBMB Life 57:631–638

    Article  CAS  PubMed  Google Scholar 

  3. Budd GE (2008) The earliest fossil record of the animals and its significance. Philos Trans R Soc Lond B Biol Sci 363:1425–1434

    Article  PubMed  Google Scholar 

  4. Hochachka PW, Land SC, Buck LT (1997) Oxygen sensing and signal transduction in metabolic defense against hypoxia: lessons from vertebrate facultative anaerobes. Comp Biochem Physiol A Physiol 118:23–29

    Article  CAS  PubMed  Google Scholar 

  5. Webster WS, Abela D (2007) The effect of hypoxia in development. Birth Defects Res C Embryo Today 81:215–228

    Article  CAS  PubMed  Google Scholar 

  6. Koch LG, Britton SL (2007) Evolution, atmospheric oxygen, and complex disease. Physiol Genomics 30:205–208

    Article  CAS  PubMed  Google Scholar 

  7. Hochachka PW (1998) Mechanisms and evolution of hypoxia-tolerance in humans. J Exp Biol 201:1243–1254

    CAS  PubMed  Google Scholar 

  8. Baldwin JE, Krebs H (1981) The evolution of metabolic cycles. Nature 291:381–382

    Article  CAS  PubMed  Google Scholar 

  9. Karlin KD (1993) Metalloenzymes, structural motifs, and inorganic models. Science 261:701–708

    Article  CAS  PubMed  Google Scholar 

  10. Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc Biol Sci 276:1737–1745

    Article  CAS  PubMed  Google Scholar 

  11. Beilman GJ, Cerra FB (1996) The future. Monitoring cellular energetics. Crit Care Clin 12:1031–1042

    Article  CAS  PubMed  Google Scholar 

  12. Duke T (1999) Dysoxia and lactate. Arch Dis Child 81:343–350

    Article  CAS  PubMed  Google Scholar 

  13. Caille V, Squara P (2006) Oxygen uptake-to-delivery relationship: a way to assess adequate flow. Crit Care 10(Suppl 3):4

    Article  Google Scholar 

  14. Levy RJ, Deutschman CS (2007) Cytochrome c oxidase dysfunction in sepsis. Crit Care Med 35:S468–475

    Article  CAS  PubMed  Google Scholar 

  15. Kunze K (1969) Significance of oxygen pressure field measurements in human muscle, with special reference on PO2 micro-needle electrodes. Progr Respir Res 3:153–157

    Google Scholar 

  16. Van Den Brenk HA, Jamieson D (1962) Potentiation by anaesthetics of brain damage due to breathing high-pressure oxygen in mammals. Nature 194:777–778

    Article  CAS  Google Scholar 

  17. Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R (1998) Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201:1129–1139

    CAS  PubMed  Google Scholar 

  18. Gnaiger E, Steinlechner-Maran R, Mendez G, Eberl T, Margreiter R (1995) Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27:583–596

    Article  CAS  PubMed  Google Scholar 

  19. Garofalo F, Pellegrino D, Amelio D, Tota B (2009) The Antarctic hemoglobinless icefish, fifty five years later: a unique cardiocirculatory interplay of disaptation and phenotypic plasticity. Comp Biochem Physiol A Mol Integr Physiol 154:10–28

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez NC, Howlett RA, Henderson KK, Koch LG, Britton SL, Wagner HE, Favret F, Wagner PD (2006) Systemic oxygen transport in rats artificially selected for running endurance. Respir Physiol Neurobiol 151:141–150

    Article  PubMed  Google Scholar 

  21. Zuurbier CJ, van Iterson M, Ince C (1999) Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res 44:488–497

    Article  CAS  PubMed  Google Scholar 

  22. Prabhakar NR (2006) O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp Physiol 91:17–23

    Article  CAS  PubMed  Google Scholar 

  23. Liss B, Roeper J (2001) Molecular physiology of neuronal K-ATP channels (review). Mol Membr Biol 18:117–127

    Article  CAS  PubMed  Google Scholar 

  24. Taburet AM, Tollier C, Richard C (1990) The effect of respiratory disorders on clinical pharmacokinetic variables. Clin Pharmacokinet 19:462–490

    Article  CAS  PubMed  Google Scholar 

  25. Richer M, Lam YW (1993) Hypoxia, arterial pH and theophylline disposition. Clin Pharmacokinet 25:283–299

    Article  CAS  PubMed  Google Scholar 

  26. Burke PV, Poyton RO (1998) Structure/function of oxygen-regulated isoforms in cytochrome c oxidase. J Exp Biol 201:1163–1175

    CAS  PubMed  Google Scholar 

  27. Lahiri S, Antosiewicz J, Pokorski M (2007) A common oxygen sensor regulates the sensory discharge and glomus cell HIF-1alpha in the rat carotid body. J Physiol Pharmacol 58(Suppl 5):327–333

    PubMed  Google Scholar 

  28. Acker T, Acker H (2004) Cellular oxygen sensing need in CNS function: physiological and pathological implications. J Exp Biol 207:3171–3188

    Article  CAS  PubMed  Google Scholar 

  29. Mironov V, Hritz MA, LaManna JC, Hudetz AG, Harik SI (1994) Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Res 660:73–80

    Article  CAS  PubMed  Google Scholar 

  30. Lahiri S, Roy A, Li J, Baby SM, Mokashi A, Di Giulio C (2004) Role of Fe2+ in oxygen sensing in the carotid body. Adv Exp Med Biol 551:59–64

    Article  CAS  PubMed  Google Scholar 

  31. Jamieson D, van den Brenk HA (1965) Electrode size and tissue pO2 measurement in rats exposed to air or high pressure oxygen. J Appl Physiol 20:514–518

    CAS  PubMed  Google Scholar 

  32. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    Article  CAS  PubMed  Google Scholar 

  33. Korzeniewski B (1998) Is it possible to predict any properties of oxidative phosphorylation in a theoretical way? Mol Cell Biochem 184:345–358

    Article  CAS  PubMed  Google Scholar 

  34. Keevil T, Mason HS (1978) Molecular oxygen in biological oxidations—an overview. Meth Enzymol 52:3–40

    Article  CAS  PubMed  Google Scholar 

  35. Jones DP, Aw TY, Shan X (1989) Drug metabolism and toxicity during hypoxia. Drug Metab Rev 2–4:247–260

    Article  Google Scholar 

  36. Feiters MC (2001) Mimicking biological electron transfer and oxygen activation involving iron and copper proteins: a bio(in)organic supramolecular approach. Met Ions Biol Syst 38:461–655

    CAS  PubMed  Google Scholar 

  37. Sun H, Scott DO (2010) Structure-based drug metabolism predictions for drug design. Chem Biol Drug Des 75:3–17

    Article  CAS  PubMed  Google Scholar 

  38. Schumacker PT, Chandel N, Agusti AG (1993) Oxygen conformance of cellular respiration in hepatocytes. Am J Physiol 265:L395–402

    CAS  PubMed  Google Scholar 

  39. Subramanian RM, Chandel N, Budinger GR, Schumacker PT (2007) Hypoxic conformance of metabolism in primary rat hepatocytes: a model of hepatic hibernation. Hepatology 45:455–464

    Article  CAS  PubMed  Google Scholar 

  40. Heerlein K, Schulze A, Hotz L, Bartsch P, Mairbaurl H (2005) Hypoxia decreases cellular ATP demand and inhibits mitochondrial respiration of a549 cells. Am J Respir Cell Mol Biol 32:44–51

    Article  CAS  PubMed  Google Scholar 

  41. Hsu T, Adereth Y, Kose N, Dammai V (2006) Endocytic function of von Hippel-Lindau tumor suppressor protein regulates surface localization of fibroblast growth factor receptor 1 and cell motility. J Biol Chem 281:12069–12080

    Article  CAS  PubMed  Google Scholar 

  42. Wolin MS, Ahmad M, Gao Q, Gupte SA (2007) Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing. Antioxid Redox Signal 9:671–678

    Article  CAS  PubMed  Google Scholar 

  43. Fradette C, Du Souich P (2004) Effect of hypoxia on cytochrome P450 activity and expression. Curr Drug Metab 5:257–271

    Article  CAS  PubMed  Google Scholar 

  44. Savransky V, Reinke C, Jun J, Bevans-Fonti S, Nanayakkara A, Li J, Myers AC, Torbenson MS, Polotsky VY (2009) Chronic intermittent hypoxia and acetaminophen induce synergistic liver injury in mice. Exp Physiol 94:228–239

    Article  CAS  PubMed  Google Scholar 

  45. Smith LL (1987) Mechanism of paraquat toxicity in lung and its relevance to treatment. Hum Toxicol 6:31–36

    Article  CAS  PubMed  Google Scholar 

  46. Demeere JL (1984) Paraquat toxicity. The use of hypoxic ventilation. Acta Anaesthesiol Belg 35:219–230

    CAS  PubMed  Google Scholar 

  47. Riepe MW, Esclaire F, Kasischke K, Schreiber S, Nakase H, Kempski O, Ludolph AC, Dirnagl U, Hugon J (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: “chemical preconditioning”. J Cereb Blood Flow Metab 17:257–264

    Article  CAS  PubMed  Google Scholar 

  48. Huber R, Kasischke K, Ludolph AC, Riepe MW (1999) Increase of cellular hypoxic tolerance by erythromycin and other antibiotics. NeuroReport 10:1543–1546

    Article  CAS  PubMed  Google Scholar 

  49. Riepe MW, Kasischke K, Raupach A (1997) Acetylsalicylic acid increases tolerance against hypoxic and chemical hypoxia. Stroke 28:2006–2011

    CAS  PubMed  Google Scholar 

  50. Burtscher M, Likar R, Nachbauer W, Philadelphy M (1998) Aspirin for prophylaxis against headache at high altitudes: randomised, double blind, placebo controlled trial. Bmj 316:1057–1058

    CAS  PubMed  Google Scholar 

  51. LaManna JC, Chavez JC, Pichiule P (2004) Structural and functional adaptation to hypoxia in the rat brain. J Exp Biol 207:3163–3169

    Article  CAS  PubMed  Google Scholar 

  52. Garnock-Jones KP, Dhillon S, Scott LJ (2009) Armodafinil. CNS Drugs 23:793–803

    Article  CAS  PubMed  Google Scholar 

  53. Fradette C, du Souich P (2003) Hypoxia-inducible factor-1 and activator protein-1 modulate the upregulation of CYP3A6 induced by hypoxia. Br J Pharmacol 140:1146–1154

    Article  CAS  PubMed  Google Scholar 

  54. Semenza GL (2007) Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 12:853–859

    Article  CAS  PubMed  Google Scholar 

  55. Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9

    CAS  PubMed  Google Scholar 

  56. Beauvoit B, Rigoulet M (2001) Regulation of cytochrome c oxidase by adenylic nucleotides. Is oxidative phosphorylation feedback regulated by its end-products? IUBMB Life 52:143–152

    Article  CAS  PubMed  Google Scholar 

  57. Maxwell PH (2005) The HIF pathway in cancer. Semin Cell Dev Biol 16:523–530

    Article  CAS  PubMed  Google Scholar 

  58. Tavani A, La Vecchia C (2004) Coffee, decaffeinated coffee, tea and cancer of the colon and rectum: a review of epidemiological studies, 1990-2003. Cancer Causes Control 15:743–757

    Article  PubMed  Google Scholar 

  59. LaCroix AZ, Mead LA, Liang KY, Thomas CB, Pearson TA (1986) Coffee consumption and the incidence of coronary heart disease. N Engl J Med 315:977–982

    Article  CAS  PubMed  Google Scholar 

  60. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Simioni C, Leung E, Maclennan S, Baraldi PG, Borea PA (2007) Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 72:395–406

    Article  CAS  PubMed  Google Scholar 

  61. Purushothaman J, Suryakumar G, Shukla D, Jayamurthy H, Kasiganesan H, Kumar R, Sawhney RC (2010) Modulation of hypoxia-induced pulmonary vascular leakage in rats by seabuckthorn (Hippophae rhamnoides L.). Evid Based Complement Alternat Med (in press)

  62. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  CAS  PubMed  Google Scholar 

  63. Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757

    CAS  PubMed  Google Scholar 

  64. Chen Y, Cairns R, Papandreou I, Koong A, Denko NC (2009) Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS ONE 4:e7033

    Article  PubMed  Google Scholar 

  65. Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K, Kubo A, Akai Y, Rankin EB, Neilson EG, Haase VH, Saito Y (2008) Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Ren Physiol 295:F1023–1029

    Article  CAS  Google Scholar 

  66. Otrock ZK, Hatoum HA, Awada AH, Ishak RS, Shamseddine AI (2009) Hypoxia-inducible factor in cancer angiogenesis: structure, regulation and clinical perspectives. Crit Rev Oncol Hematol 70:93–102

    Article  PubMed  Google Scholar 

  67. Maxwell PH (2002) Oxygen homeostasis and cancer: insights from a rare disease. Clin Med 2:356–362

    PubMed  Google Scholar 

  68. Loges S, Roncal C, Carmeliet P (2009) Development of targeted angiogenic medicine. J Thromb Haemost 7:21–33

    Article  CAS  PubMed  Google Scholar 

  69. Sasabe E, Zhou X, Li D, Oku N, Yamamoto T, Osaki T (2007) The involvement of hypoxia-inducible factor-1alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells. Int J Cancer 120:277

    Article  Google Scholar 

  70. Bedogni B, Welford SM, Cassarino DS, Nickoloff BJ, Giaccia AJ, Powell MB (2005) The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell 8:443–454

    Article  CAS  PubMed  Google Scholar 

  71. Bedogni B, O’Neill MS, Welford SM, Bouley DM, Giaccia AJ, Denko NC, Powell MB (2004) Topical treatment with inhibitors of the phosphatidylinositol 3′-kinase/Akt and Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways reduces melanoma development in severe combined immunodeficient mice. Cancer Res 64:2552–2560

    Article  CAS  PubMed  Google Scholar 

  72. McCarty MF, Barroso-Aranda J, Contreras F (2010) Practical strategies for suppressing hypoxia-inducible factor activity in cancer therapy. Med Hypotheses 74:789–797

    Article  CAS  PubMed  Google Scholar 

  73. Henk JM, Bishop K, Shepherd SF (2003) Treatment of head and neck cancer with CHART and nimorazole: phase II study. Radiother Oncol 66:65–70

    Article  PubMed  Google Scholar 

  74. Reddy SB, Williamson SK (2009) Tirapazamine: a novel agent targeting hypoxic tumor cells. Expert Opin Investig Drugs 18:77–87

    Article  CAS  PubMed  Google Scholar 

  75. Albertella MR, Loadman PM, Jones PH, Phillips RM, Rampling R, Burnet N, Alcock C, Anthoney A, Vjaters E, Dunk CR, Harris PA, Wong A, Lalani AS, Twelves CJ (2008) Hypoxia-selective targeting by the bioreductive prodrug AQ4N in patients with solid tumors: results of a phase I study. Clin Cancer Res 14:1096–1104

    Article  CAS  PubMed  Google Scholar 

  76. Sitkovsky MV (2009) T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol 30:102–108

    Article  CAS  PubMed  Google Scholar 

  77. Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947–5952

    Article  CAS  PubMed  Google Scholar 

  78. Chen L, Waxman DJ (2002) Cytochrome P450 gene-directed enzyme prodrug therapy (GDEPT) for cancer. Curr Pharm Des 8:1405–1416

    Article  CAS  PubMed  Google Scholar 

  79. McDonough MA, McNeill LA, Tilliet M, Papamicael CA, Chen QY, Banerji B, Hewitson KS, Schofield CJ (2005) Selective inhibition of factor inhibiting hypoxia-inducible factor. J Am Chem Soc 127:7680–7681

    Article  CAS  PubMed  Google Scholar 

  80. Asikainen TM, Ahmad A, Schneider BK, Ho WB, Arend M, Brenner M, Gunzler V, White CW (2005) Stimulation of HIF-1alpha, HIF-2alpha, and VEGF by prolyl 4-hydroxylase inhibition in human lung endothelial and epithelial cells. Free Radic Biol Med 38:1002–1013

    Article  CAS  PubMed  Google Scholar 

  81. Zaman K, Ryu H, Hall D, O’Donovan K, Lin KI, Miller MP, Marquis JC, Baraban JM, Semenza GL, Ratan RR (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci 19:9821–9830

    CAS  PubMed  Google Scholar 

  82. Siddiq A, Ayoub IA, Chavez JC, Aminova L, Shah S, LaManna JC, Patton SM, Connor JR, Cherny RA, Volitakis I, Bush AI, Langsetmo I, Seeley T, Gunzler V, Ratan RR (2005) Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J Biol Chem 280:41732–41743

    Article  CAS  PubMed  Google Scholar 

  83. Raff H, Tzankoff SP, Fitzgerald RS (1982) Chemoreceptor involvement in cortisol responses to hypoxia in ventilated dogs. J Appl Physiol 52:1092–1096

    CAS  PubMed  Google Scholar 

  84. Raff H, Shinsako J, Dallman MF (1984) Renin and ACTH responses to hypercapnia and hypoxia after chronic carotid chemodenervation. Am J Physiol 247:R412–417

    CAS  PubMed  Google Scholar 

  85. Zinkernagel AS, Johnson RS, Nizet V (2007) Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 85:1339–1346

    Article  CAS  PubMed  Google Scholar 

  86. Semenza GL, Prabhakar NR (2007) HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal 9:1391–1396

    Article  CAS  PubMed  Google Scholar 

  87. Fraisl P, Aragones J, Carmeliet P (2009) Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8:139–152

    Article  CAS  PubMed  Google Scholar 

  88. Myllyharju J (2008) Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann Med 40:402–417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nikolaus Netzer MD for his suggestion to review this topic for the conference. We thank the conference members and the Division of Pulmonary, Critical Care, and Sleep Medicine at University Hospitals of Cleveland, for comments and suggestions on the topic and the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kingman P. Strohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donovan, L., Welford, S.M., Haaga, J. et al. Hypoxia—implications for pharmaceutical developments. Sleep Breath 14, 291–298 (2010). https://doi.org/10.1007/s11325-010-0368-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-010-0368-x

Keywords

Navigation