Sleep and Breathing

, Volume 11, Issue 4, pp 253–257 | Cite as

Central serous chorioretinopathy and risk for obstructive sleep apnea

  • Thellea K. LevequeEmail author
  • Le Yu
  • David C. Musch
  • Ronald D. Chervin
  • David N. Zacks
Original Article


Patients with obstructive sleep apnea (OSA), in comparison to controls, have increased levels of circulating epinephrine and norepinephrine, both of which are risk factors for the development of central serous chorioretinopathy (CSCR). The aim of this pilot study was to investigate the frequency of symptoms that suggest OSA in CSCR patients and normal controls. The Berlin Questionnaire, a validated research tool to assess risk for OSA, was administered to 29 patients who met the criteria for active, acute, non-steroid-induced CSCR and 29 controls matched for age and sex. In this retrospective case-controlled study, the main outcome measure was increased risk for OSA. The mean age of the patients was 47.8 years (range 29–72) and the mean age of controls was 47.3 years (range 25–70). Seventy-six percent (22) of both groups were men. Survey scores showed 58.6% (17) of patients with CSCR to be at an increased risk for OSA compared to 31.0% (nine) of controls. A conditional logistic regression analysis showed that the CSCR group had a higher proportion with an increased risk for OSA compared to the control group (odds ratio=3.67; 95% CI: 1.02, 13.14; P = 0.046). Patients with CSCR may be more likely than other adults to have OSA, and screening for this sleep disorder should be considered in this population. Further research is warranted to determine whether sleep apnea may contribute to the development of CSCR, and to assess whether treatment of sleep apnea might offer a new therapeutic option for some patients with CSCR.


Central serous chorioretinopathy Obstructive sleep apnea 



Funding of this study was from the University of Michigan Kellogg Eye Center.

Competing interests



  1. 1.
    Guyer DR et al (1999) Retina-Vitreous-Macula. Saunders, PhiladelphiaGoogle Scholar
  2. 2.
    Yannuzzi LA (1987) Type-A behavior and central serous chorioretinopathy. Retina 7:111–131PubMedCrossRefGoogle Scholar
  3. 3.
    Gelber GS, Schatz H (1987) Loss of vision due to central serous chorioretinopathy following psychological stress. Am J Psychiatry 144:46–50PubMedGoogle Scholar
  4. 4.
    Gass JD (1991) Central serous chorioteinopathy and white subretinal exudation during pregnancy. Arch Ophthalmol 109:677–681PubMedGoogle Scholar
  5. 5.
    Bouzas EA, Scott MH, Mastorakos G et al (1993) Central serous chorioretinopathy in endogenous hypercortisolism. Arch Ophthalmol 111:1229–1233PubMedGoogle Scholar
  6. 6.
    Bouzas EA, Karadimas P, Pournaras CJ (2002) Central serous chorioretinopathy and glucocorticoids. Surv Ophthalmol 47:431–448PubMedCrossRefGoogle Scholar
  7. 7.
    Carvalho-Recchia CA, Yannuzzi LA, Negrao S et al (2002) Corticosteroids and central serous chorioretinopathy. Ophthalmology 109:1834–1837PubMedCrossRefGoogle Scholar
  8. 8.
    Michael JC, Pak J, Pulido J et al (2003) Central serous chorioretinopathy associated with administration of sympathomimetic agents. Am J Ophthalmol 136:182–185PubMedCrossRefGoogle Scholar
  9. 9.
    Garg SP, Dada T, Talwar D et al (1997) Endogenous cortisol profile in patients with central serous chorioretinopathy. Br J Ophthalmol 81:962–964PubMedGoogle Scholar
  10. 10.
    Haimovici R, Rumelt S, Melby J (2003) Endocrine abnormalities in patients with central serous chorioretinopathy. Ophthalmology 110:698–703PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshioka H (2003) The etiology of central serous chorioretinopathy. Nippon Ganka Gakkai Zasshi 95:1181–1195Google Scholar
  12. 12.
    Yoshioka H, Katsume Y, Akune H (1982) Experimental central serous chorioretinopathy in monkey eyes: fluorescein angiographic findings. Ophthalmologica 185:168–178PubMedCrossRefGoogle Scholar
  13. 13.
    Fletcher EC (1997) Sympathetic activity and blood pressure in the sleep apnea syndrome. Respiration 64(Suppl1):22–28PubMedCrossRefGoogle Scholar
  14. 14.
    Dimsdale JE, Coy T, Ziegler MG et al (1995) The effect of sleep apnea on plasma and urinary catecholamines. Sleep 18:377–381PubMedGoogle Scholar
  15. 15.
    Elmasry A, Lindberg E, Hedner J et al (2002) Obstructive sleep apnoea and urine catecholamines in hypertensive males: a population-based study. Eur Respir J 19:511–517PubMedCrossRefGoogle Scholar
  16. 16.
    McNicholas (2002) Breathing Disorders in Sleep. WB Saunders, LondonGoogle Scholar
  17. 17.
    Fletcher EC, Miller J, Schaaf JW et al (1987) Urinary catecholamines before and after tracheostomy in patients with obstructive sleep apnea and hypertension. Sleep 10:35–44PubMedGoogle Scholar
  18. 18.
    Grunstein RR, Stewart DA, Lloyd H et al (1996) Acute withdrawal of nasal CPAP in obstructive sleep apnea does not cause a rise in stress hormones. Sleep 19:774–782PubMedGoogle Scholar
  19. 19.
    O’Connor TM, O’Halloran DJ, Shanahan F (2000) The stress response and the hypothalamic–pituitary–adrenal axis: from molecule to melancholia. QJM 93:323–333PubMedCrossRefGoogle Scholar
  20. 20.
    Spath-Schwalbe E, Gofferje M, Kern W et al (1991) Sleep disruption alters nocturnal ACTH and cortisol secretory patterns. Biol Psychiatry 29:575–584PubMedCrossRefGoogle Scholar
  21. 21.
    Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354:1435–1439PubMedCrossRefGoogle Scholar
  22. 22.
    American Academy of Sleep Medicine (2005) International Classification of Sleep Disorders, 2nd ed.: Diagnostic and coding manual. American Academy of Sleep Medicine, Westchester, IllinoisGoogle Scholar
  23. 23.
    Netzer NC, Stoohs RA, Netzer CM et al (1999) Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med 131:485–491PubMedGoogle Scholar
  24. 24.
    Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165:1217–1239PubMedCrossRefGoogle Scholar
  25. 25.
    Haimovici R, Koh S, Gagnon DR et al (2004) Central Serous Chorioretinopathy Case-Control Study Group. Risk factors for central serous chorioretinopathy: a case-control study. Ophthalmology 111:244–249PubMedCrossRefGoogle Scholar
  26. 26.
    Phillipson EA (1993) Sleep apnea—a major public health problem. N Engl J Med 328:1271–1273PubMedCrossRefGoogle Scholar
  27. 27.
    Shamsuzzaman AS, Gersh BJ, Somers VK (2003) Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA 290:1906–1914PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Thellea K. Leveque
    • 1
    Email author
  • Le Yu
    • 1
  • David C. Musch
    • 1
    • 2
  • Ronald D. Chervin
    • 3
  • David N. Zacks
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesKellogg Eye CenterAnn ArborUSA
  2. 2.Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborUSA
  3. 3.Sleep Disorders Center and Michael S. Aldrich Sleep Disorders LaboratoryUniversity of Michigan Medical School and University HospitalAnn ArborUSA

Personalised recommendations