Skip to main content

Advertisement

Log in

Omniparticle Contrast Agent for Multimodal Imaging: Synthesis and Characterization in an Animal Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Individual imaging modalities have certain advantages, but each suffers from drawbacks that other modalities may overcome. The goal of this study was to create a novel contrast agent suitable for various imaging modalities that after a single administration can bridge and strengthen the collaboration between the research fields as well as enrich the information obtained from any one modality.

Procedures

The contrast agent platform is based on dextran-coated iron oxide nanoparticles (for MRI and MPI) and synthesized using a modified co-precipitation method, followed by a series of conjugation steps with a fluorophore (for fluorescence and photoacoustic imaging), thyroxine (for CT imaging), and chelators for radioisotope labeling (for PET imaging). The fully conjugated agent was then tested in vitro in cell uptake, viability, and phantom studies and in vivo in a model of intraductal injection and in a tumor model.

Results

The agent was synthesized, characterized, and tested in vitro where it showed the ability to produce a signal on MRI/MPI/FL/PA/CT and PET images. Studies in cells showed the expected concentration-dependent uptake of the agent without noticeable toxicity. In vivo studies demonstrated localization of the agent to the ductal tree in mice after intraductal injection with different degrees of resolution, with CT being the best for this particular application. In a model of injected labeled tumor cells, the agent produced a signal with all modalities and showed persistence in tumor cells confirmed by histology.

Conclusions

A fully functional omniparticle contrast agent was synthesized and tested in vitro and in vivo in two animal models. Results shown here point to the generation of a potent signal in all modalities tested without detrimental toxicity. Future use of this agent includes its exploration in various models of human disease including image-guided diagnostic and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arami H, Teeman E, Troksa A et al (2017) Tomographic magnetic particle imaging of cancer targeted nanoparticles. Nanoscale 9:18723–18730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Vries EGE, Kist de Ruijter L, Lub-de Hooge MN, Dierckx RA, Elias SG, Oosting SF (2019) Integrating molecular nuclear imaging in clinical research to improve anticancer therapy. Nat Rev Clin Oncol 16:241–255

    Article  PubMed  Google Scholar 

  3. Kircher MF, de la Zerda A, Jokerst JV et al (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maleszewski JJ, Anavekar NS, Moynihan TJ, Klarich KW (2017) Pathology, imaging, and treatment of cardiac tumours. Nat Rev Cardiol 14:536–549

    Article  PubMed  Google Scholar 

  5. Park SM, Aalipour A, Vermesh O, Yu JH, Gambhir SS (2017) Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater 2

  6. Signore A, Mather SJ, Piaggio G, Malviya G, Dierckx RA (2010) Molecular imaging of inflammation/infection: nuclear medicine and optical imaging agents and methods. Chem Rev 110:3112–3145

    Article  CAS  PubMed  Google Scholar 

  7. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117:901–986

    Article  CAS  PubMed  Google Scholar 

  8. Yankeelov TE, Abramson RG, Quarles CC (2014) Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol 11:670–680

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu EY, Bishop M, Zheng B et al (2017) Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett 17:1648–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim S, Yoon HY, Jang HJ et al (2019) Dual-modal imaging-guided precise tracking of bioorthogonally labeled mesenchymal stem cells in mouse brain stroke. ACS Nano 13:10991–11007

    Article  CAS  PubMed  Google Scholar 

  11. Yu GT, Luo MY, Li H et al (2019) Molecular targeting nanoprobes with non-overlap emission in the second near-infrared window for in vivo two-color colocalization of immune cells. ACS Nano 13:12830–12839

    Article  CAS  PubMed  Google Scholar 

  12. Zheng B, Vazin T, Goodwill PW et al (2015) Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep 5:14055

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grippin AJ, Wummer B, Wildes T et al (2019) Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano 13:13884–13898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF (2004) To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med 45:56S-65S

    CAS  PubMed  Google Scholar 

  15. Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256:32–61

    Article  PubMed  Google Scholar 

  16. Seale MK, Catalano OA, Saini S, Hahn PF, Sahani DV (2009) Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics 29:1725–1748

    Article  PubMed  Google Scholar 

  17. Beckett KR, Moriarity AK, Langer JM (2015) Safe use of contrast media: what the radiologist needs to know. Radiographics 35:1738–1750

    Article  PubMed  Google Scholar 

  18. Bogdanov A Jr, Mazzanti ML (2011) Molecular magnetic resonance contrast agents for the detection of cancer: past and present. Semin Oncol 38:42–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pomara C, Pascale N, Maglietta F, Neri M, Riezzo I, Turillazzi E (2015) Use of contrast media in diagnostic imaging: medico-legal considerations. Radiol Med 120:802–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Widmark JM (2007) Imaging-related medications: a class overview Proc (Bayl Univ Med Cent) 20:408–417

    PubMed  Google Scholar 

  21. Herfert K, Mannheim JG, Kuebler L et al (2020) Quantitative rodent brain receptor imaging. Mol Imaging Biol 22:223–244

    Article  PubMed  Google Scholar 

  22. Serkova NJ, Glunde K, Haney CR et al (2021) Preclinical applications of multi-platform imaging in animal models of cancer. Can Res 81:1189–1200

    Article  CAS  Google Scholar 

  23. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  PubMed  Google Scholar 

  24. Wahsner J, Gale EM, Rodriguez-Rodriguez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119:957–1057

    Article  CAS  PubMed  Google Scholar 

  25. Song G, Zheng X, Wang Y, Xia X, Chu S, Rao J (2019) A magneto-optical nanoplatform for multimodality imaging of tumors in mice. ACS Nano 13:7750–7758

    Article  CAS  PubMed  Google Scholar 

  26. Kircher MF, Weissleder R, Josephson L (2004) A dual fluorochrome probe for imaging proteases. Bioconjug Chem 15:242–248

    Article  CAS  PubMed  Google Scholar 

  27. Townsend DW (2008) Dual-modality imaging: combining anatomy and function. J Nucl Med 49:938–955

    Article  PubMed  Google Scholar 

  28. Wang Y, Chen J, Yang B et al (2016) In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles. Theranostics 6:272–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  CAS  PubMed  Google Scholar 

  30. Yigit MV, Ghosh SK, Kumar M et al (2013) Context-dependent differences in miR-10b breast oncogenesis can be targeted for the prevention and arrest of lymph node metastasis. Oncogene 32:1530–1538

    Article  CAS  PubMed  Google Scholar 

  31. Vogel P, Lother S, Ruckert MA et al (2014) MRI Meets MPI: a bimodal MPI-MRI tomograph. IEEE Trans Med Imaging 33:1954–1959

    Article  PubMed  Google Scholar 

  32. Vogel P, Markert J, Ruckert MA et al (2019) Magnetic particle imaging meets computed tomography: first simultaneous imaging. Sci Rep 9:12627

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang G, Chen C, Pai P et al (2019) Intraductal fulvestrant for therapy of ERalpha-positive ductal carcinoma in situ of the breast: a preclinical study. Carcinogenesis 40:903–913

    Article  CAS  PubMed  Google Scholar 

  34. Brock A, Krause S, Li H, et al. (2014) Silencing HoxA1 by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. Sci Transl Med 6:217ra212

  35. Murata S, Kominsky SL, Vali M et al (2006) Ductal access for prevention and therapy of mammary tumors. Can Res 66:638–645

    Article  CAS  Google Scholar 

  36. Okugawa H, Yamamoto D, Uemura Y et al (2005) Effect of perductal paclitaxel exposure on the development of MNU-induced mammary carcinoma in female S-D rats. Breast Cancer Res Treat 91:29–34

    Article  CAS  PubMed  Google Scholar 

  37. Sivaraman L, Gay J, Hilsenbeck SG et al (2002) Effect of selective ablation of proliferating mammary epithelial cells on MNU induced rat mammary tumorigenesis. Breast Cancer Res Treat 73:75–83

    Article  CAS  PubMed  Google Scholar 

  38. Kenyon E, Westerhuis JJ, Volk M et al (2019) Ductal tree ablation by local delivery of ethanol prevents tumor formation in an aggressive mouse model of breast cancer. Breast Cancer Res 21:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stearns V, Mori T, Jacobs LK, et al. (2011) Preclinical and clinical evaluation of intraductally administered agents in early breast cancer. Sci Transl Med 3:106ra108.

  40. Love SM, Zhang W, Gordon EJ et al (2013) A feasibility study of the intraductal administration of chemotherapy. Cancer Prev Res (Phila) 6:51–58

    Article  CAS  PubMed  Google Scholar 

  41. Chakravarty S, Hix JML, Wiewiora KA et al (2020) Tantalum oxide nanoparticles as versatile contrast agents for X-ray computed tomography. Nanoscale 12:7720–7734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoehn M, Wiedermann D, Justicia C et al (2007) Cell tracking using magnetic resonance imaging. J Physiol 584:25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Foster-Gareau P, Heyn C, Alejski A, Rutt BK (2003) Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 49:968–971

    Article  PubMed  Google Scholar 

  44. Bulte JWM, Daldrup-Link HE (2018) Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology 289:604–615

    Article  PubMed  Google Scholar 

  45. Krause S, Brock A, Ingber DE (2013) Intraductal injection for localized drug delivery to the mouse mammary gland. J Vis Exp

  46. Wang P, Yigit MV, Medarova Z et al (2011) Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60:565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hifumi H, Yamaoka S, Tanimoto A et al (2009) Dextran coated gadolinium phosphate nanoparticles for magnetic resonance tumor imaging. J Mater Chem 19:6393–6399

    Article  CAS  Google Scholar 

  48. Markides H, Rotherham M, El Haj AJ (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 2012:614094

    Article  Google Scholar 

  49. Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13:5554–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoo B, Ghosh SK, Kumar M, Moore A, Yigit MV, Medarova Z (2014) Design of nanodrugs for miRNA targeting in tumor cells. J Biomed Nanotechnol 10:1114–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar M, Yigit M, Dai G, Moore A, Medarova Z (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Can Res 70:7553–7561

    Article  CAS  Google Scholar 

  52. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  53. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  PubMed  Google Scholar 

  54. Lemaster JE, Chen F, Kim T, Hariri A, Jokerst JV (2018) Development of a trimodal contrast agent for acoustic and magnetic particle imaging of stem cells. ACS Appl Nano Mater 1:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116:10473–10512

    Article  CAS  PubMed  Google Scholar 

  56. Panayides AS, Amini A, Filipovic ND et al (2020) AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health Inform 24:1837–1857

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tang X (2020) The role of artificial intelligence in medical imaging research. BJR Open 2:20190031

    PubMed  Google Scholar 

  58. Van Praet KM, van Kampen A, Kofler M et al (2020) Minimally invasive surgical aortic valve replacement: the RALT approach. J Card Surg 35:2341–2346

    Article  PubMed  Google Scholar 

  59. Van Praet KM, Van Kampen A, Kofler M, et al. (2020) Minimally invasive surgical aortic valve replacement through a right anterolateral thoracotomy. Multimed Man Cardiothorac Surg 2020

  60. Li S, Zhang H, Chen M, Wang Z, Lin Y (2021) A multidisciplinary team nursing model in the treatment of patients undergoing transapical mitral valve clamping: a prospective study. J Cardiothorac Surg 16:203

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xue Y, Zhou Q, Li S et al (2021) Transapical transcatheter valve replacement using J-valve for aortic valve diseases. Ann Thorac Surg 112:1243–1249

    Article  PubMed  Google Scholar 

  62. Serpooshan V, Zhao M, Metzler SA et al (2013) The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 34:9048–9055

    Article  CAS  PubMed  Google Scholar 

  63. Wei K, Serpooshan V, Hurtado C et al (2015) Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gloria Perez for her assistance with autoradiography.

Funding

This work was supported in part by R01 CA221771 and R01 CA261691 to A.M. and R21 CA226579 and R01 CA258314 to L.S.

Author information

Authors and Affiliations

Authors

Contributions

N.R. designed and synthesized of the compound, wrote the draft of the manuscript; L.S. contributed to the concept, designed the animal model, contributed to data acquisition and analysis, revising the manuscript, and financial support of the study; E.K. contributed to the design of the animal model, data acquisition, and analysis; C.M., K.S., and J.X. contribution to in vitro and in vivo imaging, data acquisition, and analysis; A.H. assisted with cellular work; J.F. contributed to synthesis, radiolabeling, data acquisition, and analysis; A.M. contributed to the concept, revision of the manuscript, data analysis, and financial support of the study.

Corresponding author

Correspondence to Anna Moore.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8078 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, N., Sempere, L., Kenyon, E. et al. Omniparticle Contrast Agent for Multimodal Imaging: Synthesis and Characterization in an Animal Model. Mol Imaging Biol 25, 401–412 (2023). https://doi.org/10.1007/s11307-022-01770-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-022-01770-w

Keywords

Navigation