Skip to main content
Log in

Magnetic Particle Imaging Is a Sensitive In Vivo Imaging Modality for the Detection of Dendritic Cell Migration

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate magnetic particle imaging (MPI) as a method for the in vivo tracking of dendritic cells (DC). DC are used in cancer immunotherapy and must migrate from the site of implantation to lymph nodes to be effective. The magnitude of the ensuing T cell response is proportional to the number of lymph node-migrated DC. With current protocols, less than 10% of DC are expected to reach target nodes. Therefore, imaging techniques for studying DC migration must be sensitive and quantitative. Here, we describe the first study using MPI to detect and track DC injected into the footpads of C57BL/6 mice migrating to the popliteal lymph nodes (pLNs).

Procedures

DC were labelled with Synomag-D™ and injected into each hind footpad of C57BL/6 mice (n = 6). In vivo MPI was conducted immediately and repeated 48 h later. The MPI signal was measured from images and related to the signal from a known number of cells to calculate iron content. DC numbers were estimated by dividing iron content in the image by the iron per cell measured from a separate cell sample. The presence of SPIO-labeled DC in nodes was validated by ex vivo MPI, histology, and fluorescence microscopy.

Results

Day 2 imaging showed a decrease in MPI signal in the footpads and an increase in signal at the pLNs, indicating DC migration. MPI signal was detected in the left pLN in four of the six mice and two of the six mice showed MPI signal in the right pLN. Ex vivo imaging detected signal in 11/12 nodes. We report a sensitivity of approximately 4000 cells (0.015 µg Fe) in vivo and 2000 cells (0.007 µg Fe) ex vivo.

Conclusions

Here, we describe the first study to use MPI to detect and track DC in a migration model with immunotherapeutic applications. We also bring attention to the issue of resolving unequal signals within close proximity, a challenge for any pre-clinical study using a highly concentrated tracer bolus that shadows nearby lower signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Met Ö, Jensen KM, Chamberlain CA et al (2019) Principles of adoptive T cell therapy in cancer. Semin Immunopathol 41:49–58. https://doi.org/10.1007/s00281-018-0703-z

    Article  PubMed  Google Scholar 

  2. Munir H, McGettrick HM (2015) Mesenchymal stem cell therapy for autoimmune disease: risks and rewards. Stem Cells Dev 24:2091–2100. https://doi.org/10.1089/scd.2015.0008

    Article  PubMed  Google Scholar 

  3. Chang Y-H, Wu K-C, Harn H-J et al (2018) Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transplant 27:349–363. https://doi.org/10.1177/0963689717723636

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun JM, Kurtzberg J (2018) Cell therapy for diverse central nervous system disorders: inherited metabolic diseases and autism. Pediatr Res 83:364–371. https://doi.org/10.1038/pr.2017.254

    Article  CAS  PubMed  Google Scholar 

  5. Hamdan H, Hashmi SK, Lazarus H et al (2021) Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome? Blood Rev 46:100742. https://doi.org/10.1016/j.blre.2020.100742

    Article  CAS  PubMed  Google Scholar 

  6. Gilboa E, Nair SK, Lyerly HK (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46:82–87. https://doi.org/10.1007/s002620050465

  7. Förster R, Braun A, Worbs T (2012) Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol 33:271–280. https://doi.org/10.1016/j.it.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  8. Martin-Fontecha A, Sebastiani S, Höpken UE et al (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621. https://doi.org/10.1084/jem.20030448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang B, Sun C, Wang S et al (2018) Mouse dendritic cell migration in abdominal lymph nodes by intraperitoneal administration. Am J Transl Res 10:2859–2867

    PubMed  PubMed Central  Google Scholar 

  10. Liu W, Frank JA (2009) Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol 70:258–264. https://doi.org/10.1016/j.ejrad.2008.09.021

    Article  PubMed  Google Scholar 

  11. Zheng B, Yu E, Orendorff R et al (2017) Seeing SPIOs directly in vivo with magnetic particle imaging. Mol Imaging Biol 19:385–390. https://doi.org/10.1007/s11307-017-1081-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bulte JWM (2019) Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv Drug Deliv Rev 138:293–301. https://doi.org/10.1016/j.addr.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  13. Song G, Chen M, Zhang Y et al (2018) Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett 18:182–189. https://doi.org/10.1021/acs.nanolett.7b03829

    Article  CAS  PubMed  Google Scholar 

  14. Makela AV, Gaudet JM, Schott MA et al (2020) Magnetic particle imaging of macrophages associated with cancer: filling the voids left by iron-based magnetic resonance imaging. Mol Imaging Biol. https://doi.org/10.1007/s11307-020-01473-0

    Article  PubMed  Google Scholar 

  15. Boberg M, Gdaniec N, Szwargulski P et al (2021) Simultaneous imaging of widely differing particle concentrations in MPI: problem statement and algorithmic proposal for improvement. Phys Med Biol 66:095004. https://doi.org/10.1088/1361-6560/abf202

    Article  CAS  Google Scholar 

  16. Dekaban GA, Snir J, Shrum B et al (2009) Semiquantitation of mouse dendritic cell migration in vivo using cellular MRI. J Immunother 32:240–251. https://doi.org/10.1097/CJI.0b013e318197b2a0

    Article  PubMed  Google Scholar 

  17. Fink C, Smith M, Gaudet JM et al (2020) Fluorine-19 cellular MRI detection of in vivo dendritic cell migration and subsequent induction of tumor antigen-specific immunotherapeutic response. Mol Imaging Biol 22:549–561. https://doi.org/10.1007/s11307-019-01393-8

    Article  CAS  PubMed  Google Scholar 

  18. Inaba K, Inaba M, Romani N et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702

    Article  CAS  PubMed  Google Scholar 

  19. de Chickera S, Willert C, Mallet C et al (2012) Cellular MRI as a suitable, sensitive non-invasive modality for correlating in vivo migratory efficiencies of different dendritic cell populations with subsequent immunological outcomes. Int Immunol 24:29–41. https://doi.org/10.1093/intimm/dxr095

    Article  CAS  PubMed  Google Scholar 

  20. de Chickera SN, Snir J, Willert C et al (2011) Labelling dendritic cells with SPIO has implications for their subsequent in vivo migration as assessed with cellular MRI. Contrast Media Mol Imaging 6:314–327. https://doi.org/10.1002/cmmi.433

    Article  CAS  PubMed  Google Scholar 

  21. Fink C, Gaudet JM, Fox MS et al (2018) 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci Rep 8:590. https://doi.org/10.1038/s41598-017-19031-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sehl O, Makela A, Hamilton A, Foster P (2019) Trimodal cell tracking in vivo: combining iron- and fluorine-based magnetic resonance imaging with magnetic particle imaging to monitor the delivery of mesenchymal stem cells and the ensuing inflammation. Tomography 5:367–376. https://doi.org/10.18383/j.tom.2019.00020

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vogel P, Kampf T, Rückert M et al (2021) Synomag®: the new high-performance tracer for magnetic particle imaging. Int J Magn Part Imaging 7. https://doi.org/10.18416/IJMPI.2021.2103003

  24. Suzuka H, Mimura A, Inaoka Y, Murase K (2019) Magnetic nanoparticles in macrophages and cancer cells exhibit different signal behavior on magnetic particle imaging. J Nanosci Nanotechnol 19:6857–6865. https://doi.org/10.1166/jnn.2019.16619

    Article  CAS  PubMed  Google Scholar 

  25. Fong L, Brockstedt D, Benike C et al (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 166:4254–4259. https://doi.org/10.4049/jimmunol.166.6.4254

    Article  CAS  PubMed  Google Scholar 

  26. Eggert AAO, Schreurs MWJ, Boerman OC et al (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59:3340–3345

    CAS  PubMed  Google Scholar 

  27. Verdijk P, Aarntzen EHJG, Lesterhuis WJ et al (2009) Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin Cancer Res 15:2531–2540. https://doi.org/10.1158/1078-0432.CCR-08-2729

    Article  CAS  PubMed  Google Scholar 

  28. Baumjohann D, Hess A, Budinsky L et al (2006) In vivo magnetic resonance imaging of dendritic cell migration into the draining lymph nodes of mice. Eur J Immunol 36:2544–2555. https://doi.org/10.1002/eji.200535742

    Article  CAS  PubMed  Google Scholar 

  29. Rohani R, de Chickera SN, Willert C et al (2011) In vivo cellular MRI of dendritic cell migration using micrometer-sized iron oxide (MPIO) particles. Mol Imaging Biol 13:679–694. https://doi.org/10.1007/s11307-010-0403-0

    Article  PubMed  Google Scholar 

  30. Dekaban GA, Hamilton AM, Fink CA et al (2013) Tracking and evaluation of dendritic cell migration by cellular magnetic resonance imaging. WIREs Nanomed Nanobiotechnol 5:469–483. https://doi.org/10.1002/wnan.1227

    Article  CAS  Google Scholar 

  31. Ahrens ET, Bulte JWM (2013) Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol 13:755–763. https://doi.org/10.1038/nri3531

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, de Chickera SN, Willert C et al (2011) Cellular magnetic resonance imaging of monocyte-derived dendritic cell migration from healthy donors and cancer patients as assessed in a scid mouse model. Cytotherapy 13:1234–1248. https://doi.org/10.3109/14653249.2011.605349

    Article  CAS  PubMed  Google Scholar 

  33. Ferguson PM, Slocombe A, Tilley RD, Hermans IF (2013) Using magnetic resonance imaging to evaluate dendritic cell-based vaccination. PLoS ONE 8:e65318. https://doi.org/10.1371/journal.pone.0065318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Townson JL, Ramadan SS, Simedrea C et al (2009) Three-dimensional imaging and quantification of both solitary cells and metastases in whole mouse liver by magnetic resonance imaging. Cancer Res 69:8326–8331. https://doi.org/10.1158/0008-5472.CAN-09-1496

    Article  CAS  PubMed  Google Scholar 

  35. Long CM, van Laarhoven HWM, Bulte JWM, Levitsky HI (2009) Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res 69:3180–3187. https://doi.org/10.1158/0008-5472.CAN-08-3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mills PH, Hitchens TK, Foley LM et al (2012) Automated detection and characterization of SPIO-labeled cells and capsules using magnetic field perturbations. Magn Reson Med 67:278–289. https://doi.org/10.1002/mrm.22998

    Article  PubMed  Google Scholar 

  37. Franke J, Heinen U, Lehr H et al (2016) System characterization of a highly integrated preclinical hybrid MPI-MRI scanner. IEEE Trans Med Imaging 35:1993–2004. https://doi.org/10.1109/TMI.2016.2542041

    Article  PubMed  Google Scholar 

  38. Graeser M, Knopp T, Sattel TF et al (2012) Signal separation in magnetic particle imaging. IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) 2483–2485. https://doi.org/10.1109/NSSMIC.2012.6551566

  39. Herz S, Vogel P, Kampf T et al (2017) Selective signal suppression in traveling wave MPI: focusing on areas with low concentration of magnetic particles. Int J Magn Part Imaging 3(2):1709001. https://doi.org/10.18416/ijmpi.2017.1709001

  40. Croft LR, Goodwill PW, Konkle JJ et al (2016) Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys 43:424–435. https://doi.org/10.1118/1.4938097

    Article  PubMed  Google Scholar 

  41. Tay ZW, Hensley DW, Vreeland EC et al (2017) The relaxation wall: experimental limits to improving MPI spatial resolution by increasing nanoparticle core size. Biomed Phys Eng Express 3:035003–035003. https://doi.org/10.1088/2057-1976/aa6ab6

    Article  PubMed  PubMed Central  Google Scholar 

  42. Weizenecker J, Gleich B, Rahmer J et al (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10. https://doi.org/10.1088/0031-9155/54/5/L01

    Article  CAS  PubMed  Google Scholar 

  43. Weber A, Werner F, Weizenecker J et al (2016) Artifact free reconstruction with the system matrix approach by overscanning the field-free-point trajectory in magnetic particle imaging. Phys Med Biol 61:475. https://doi.org/10.1088/0031-9155/61/2/475

  44. Bulte JWM (2018) Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv Drug Deliv Rev. https://doi.org/10.1016/J.ADDR.2018.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  45. Du Y, Lai PT, Leung CH, Pong PWT (2013) Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). Int J Mol Sci 14:18682–18710. https://doi.org/10.3390/ijms140918682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferguson RM, Khandhar AP, Kemp SJ et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle Tracers. IEEE Trans Med Imaging 34:1077–1084. https://doi.org/10.1109/TMI.2014.2375065

    Article  PubMed  Google Scholar 

  47. Khandhar AP, Ferguson RM, Arami H et al (2015) Tuning surface coatings of optimized magnetite nanoparticle tracers for in vivo magnetic particle imaging. IEEE Trans Magn 51:1–4. https://doi.org/10.1109/TMAG.2014.2321096

    Article  CAS  Google Scholar 

  48. Khandhar AP, Ferguson RM, Arami H, Krishnan KM (2013) Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 34:3837–3845. https://doi.org/10.1016/j.biomaterials.2013.01.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Canadian Institutes of Health Research (CIHR) grant no. OPG 363209 and the National Sciences and Engineering Research Council (NSERC) of Canada, the Molecular Imaging Graduate Program (Western University), Translational Breast Cancer Research Unit, Ontario Graduate Scholarship, and NSERC post-graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia J. Gevaert.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevaert, J.J., Fink, C., Dikeakos, J.D. et al. Magnetic Particle Imaging Is a Sensitive In Vivo Imaging Modality for the Detection of Dendritic Cell Migration. Mol Imaging Biol 24, 886–897 (2022). https://doi.org/10.1007/s11307-022-01738-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-022-01738-w

Key words

Navigation