WHO The top 10 causes of death, Fact Sheet. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed 9 December 2020).
Pelisek J, Well G, Reeps C et al (2012) Neovascularization and angiogenic factors in advanced human carotid artery stenosis. Circ J 76:1274–1282
CAS
Article
Google Scholar
Pelisek J, Pongratz J, Deutsch L, Reeps C, Stadlbauer T, Eckstein HH (2012) Expression and cellular localization of metalloproteases ADAMs in high graded carotid artery lesions. Scand J Clin Lab Inv 72:648–656
CAS
Article
Google Scholar
Zhong XY, Ma ZC, Su YS et al (2020) Flavin adenine dinucleotide ameliorates hypertensive vascular remodeling via activating short chain acyl-CoA dehydrogenase. Life Sci 258:118156
CAS
Article
Google Scholar
Rivenson Y, de Haan K, Wallace WD, Ozcan A (2020) Emerging advances to transform histopathology using virtual staining. BME Frontiers 2020:1–11
Article
Google Scholar
Croce AC, Bottiroli G (2014) Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem 58:2461
CAS
PubMed
PubMed Central
Google Scholar
Jamme F, Kascakova S, Villette S et al (2013) Deep UV autofluorescence microscopy for cell biology and tissue histology. Biol Cell 105:277–288
CAS
Article
Google Scholar
Le TT, Langohr IM, Locker MJ, Sturek M, Cheng JX (2007) Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt 12:54007
Article
Google Scholar
Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix In vivo by using second-harmonic generation and two-photon excited fluorescence. P Natl Acad Sci USA 99:11014–11019
CAS
Article
Google Scholar
Witte S, Negrean A, Lodder JC et al (2011) Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc Natl Acad Sci U S A 108:5970–5975
CAS
Article
Google Scholar
Ji M, Orringer DA, Freudiger CW et al (2013) Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med 5:201ra119
Article
Google Scholar
Orringer DA, Pandian B, Niknafs YS et al (2017) Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng 1:27
Article
Google Scholar
Seeger M, Karlas A, Soliman D, Pelisek J, Ntziachristos V (2016) Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. Photoacoustics 4:102–111
Article
Google Scholar
Bayramoglu N, Kaakinen M, Eklund L, Heikkila J (2017) Towards virtual H&E staining of hyperspectral lung histology images using conditional generative adversarial networks. Ieee Int Conf Comp V:64–71.
Rivenson Y, Wang H, Wei Z et al (2019) Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat Biomed Eng 3:466–477
CAS
Article
Google Scholar
Rivenson Y, Liu TR, Wei ZS, Zhang Y, de Haan K, Ozcan A (2019) PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light-Sci Appl 8:23
Article
Google Scholar
Christiansen EM, Yang SJ, Ando DM et al (2018) In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173:792
CAS
Article
Google Scholar
Liu Y, Yuan H, Wang ZY, Ji SW (2020) Global pixel transformers for virtual staining of microscopy images. Ieee T Med Imaging 39:2256–2266
Article
Google Scholar
Li D, Hui H, Zhang YQ et al (2020) Deep learning for virtual histological staining of bright-field microscopic images of unlabeled carotid artery tissue. Mol Imaging Biol 22:1301–1309
CAS
Article
Google Scholar
Zhang Y, de Haan K, Rivenson Y, Li J, Delis A, Ozcan A (2020) Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue. Light Sci Appl 9:78
CAS
Article
Google Scholar
Zhou NY, Cai D, Han X, Yao JH (2019) Enhanced cycle-consistent generative adversarial network for color normalization of H&E stained images. Lect Notes Comput Sc 11764:694–702
Article
Google Scholar
Gupta L, Klinkhammer BM, Boor P, Merhof D, Gadermayr M (2019) GAN-based image enrichment in digital pathology boosts segmentation accuracy. Lect Notes Comput Sc 11764:631–639
Article
Google Scholar
Isola P, Zhu JY, Zhou TH, Efros AA (2017) Image-to-image translation with conditional adversarial networks. Proc Cvpr Ieee:5967–5976.
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Med Imag Comput Comput Assist Interv Pt Iii 9351:234–241
Google Scholar
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. Ieee T Image Process 13:600–612
Article
Google Scholar
Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018) The unreasonable effectiveness of deep features as a perceptual metric. 2018 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr):586–595.
Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun Acm 60:84–90
Article
Google Scholar
Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J (2018) StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. 2018 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr):8789–8797.
He ZL, Zuo WM, Kan MN, Shan SG, Chen XL (2019) AttGAN: facial attribute editing by only changing what you want. Ieee T Image Process 28:5464–5478
Article
Google Scholar
Liu M, Ding YK, Xia M, et al. (2019) STGAN: a unified selective transfer network for arbitrary image attribute editing. 2019 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr 2019):3668–3677.
Wang W, Zhang Y, Hui H et al (2021) The effect of endothelial progenitor cell transplantation on neointimal hyperplasia and reendothelialisation after balloon catheter injury in rat carotid arteries. Stem Cell Res Ther 12:99
CAS
Article
Google Scholar
Tong W, Hui H, Shang W et al (2021) Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics 11:506–521
CAS
Article
Google Scholar