Skip to main content

Advertisement

Log in

Molecular Imaging, How Close to Clinical Precision Medicine in Lung, Brain, Prostate and Breast Cancers

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Precision medicine is playing a pivotal role in strategies of cancer therapy. Unlike conventional one-size-fits-all chemotherapy or radiotherapy modalities, precision medicine could customize an individual treatment plan for cancer patients to acquire superior efficacy, while minimizing side effects. Precision medicine in cancer therapy relies on precise and timely tumor biological information. Traditional tissue biopsies, however, are often inadequate in meeting this requirement due to cancer heterogeneity, poor tolerance, and invasiveness. Molecular imaging could detect tumor biology characterization in a noninvasive and visual manner, and provide information about therapeutic targets, treatment response, and pharmacodynamic evaluation. This summates to significant value in guiding cancer precision medicine in aspects of patient screening, treatment monitoring, and estimating prognoses. Although growing clinical evidences support the further application of molecular imaging in precision medicine of cancer, some challenges remain. In this review, we briefly summarize and discuss representative clinical trials of molecular imaging in improving precision medicine of cancer patients, aiming to provide useful references for facilitating further clinical translation of molecular imaging to precision medicine of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  Google Scholar 

  2. Yau TO (2019) Precision treatment in colorectal cancer: now and the future. JGH Open 3:361–369

    PubMed  PubMed Central  Google Scholar 

  3. Deng X, Nakamura Y (2017) Cancer precision medicine: from cancer screening to drug selection and personalized immunotherapy. Trends in pharmacological sciences 38:15–24

    PubMed  Google Scholar 

  4. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    CAS  PubMed  Google Scholar 

  5. De Vries EGE, Kist de Ruijter L, Lub-de Hooge MN, Dierckx RA, Elias SG, Oosting SF (2019) Integrating molecular nuclear imaging in clinical research to improve anticancer therapy. Nat Rev Clin Oncol 16:241–255

    PubMed  Google Scholar 

  6. Burggraaf J, Kamerling IM, Gordon PB et al (2015) Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nature Medicine 21:955–961

    CAS  PubMed  Google Scholar 

  7. Harmsen S, Teraphongphom N, Tweedle MF, Basilion JP, Rosenthal EL (2017) Optical surgical navigation for precision in tumor resections. Molecular imaging and biology 19:357–362

    PubMed  PubMed Central  Google Scholar 

  8. Van der Veldt AA, Lubberink M, Mathijssen RH et al (2013) Toward prediction of efficacy of chemotherapy: a proof of concept study in lung cancer patients using [(1)(1)C]docetaxel and positron emission tomography. Clin Cancer Res 19:4163–4173

    PubMed  Google Scholar 

  9. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    CAS  PubMed  Google Scholar 

  10. Yoneda K, Imanishi N, Ichiki Y, Tanaka F (2019) Treatment of non-small cell lung cancer with EGFR-mutations. J UOEH 41:153–163

    CAS  PubMed  Google Scholar 

  11. Memon AA, Weber B, Winterdahl M, Jakobsen S, Meldgaard P, Madsen HHT, Keiding S, Nexo E, Sorensen BS (2011) PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. Br J Cancer 105:1850–1855

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bahce I, Smit EF, Lubberink M, van der Veldt AAM, Yaqub M, Windhorst AD, Schuit RC, Thunnissen E, Heideman DAM, Postmus PE, Lammertsma AA, Hendrikse NH (2013) Development of [(11)C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status. Clin Cancer Res 19:183–193

    CAS  PubMed  Google Scholar 

  13. Meng X, Loo BW Jr, Ma L, Murphy JD, Sun X, Yu J (2011) Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI: a pilot study. J Nucl Med 52:1573–1579

    CAS  PubMed  Google Scholar 

  14. Sun X, Xiao Z, Chen G, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Science Translational Medicine 10:eaan8840.

  15. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6:8

    PubMed  PubMed Central  Google Scholar 

  16. Broos K, Lecocq Q, Raes G, Devoogdt N, Keyaerts M, Breckpot K (2018) Noninvasive imaging of the PD-1:PD-L1 immune checkpoint: embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics 8:3559–3570

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, Oosting SF, Schröder CP, Hiltermann TJN, van der Wekken AJ, Groen HJM, Kwee TC, Elias SG, Gietema JA, Bohorquez SS, de Crespigny A, Williams SP, Mancao C, Brouwers AH, Fine BM, de Vries EGE (2018) (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24:1852–1858

    CAS  PubMed  Google Scholar 

  18. Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen GAMS, Boellaard R, du S, Hayes W, Smith R, Windhorst AD, Hendrikse NH, Poot A, Vugts DJ, Thunnissen E, Morin P, Lipovsek D, Donnelly DJ, Bonacorsi SJ, Velasquez LM, de Gruijl TD, Smit EF, de Langen AJ (2018) Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun 9:4664

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Haubner R, Wester HJ (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 10:1439–1455

    CAS  PubMed  Google Scholar 

  20. Chen B, Zhao G, Ma Q, Ji B, Ji T, Xin H, Gao S (2015) (99m)Tc-3P-RGD2 SPECT to monitor early response to bevacizumab therapy in patients with advanced non-small cell lung cancer. Int J Clin Exp Pathol 8:16064–16072

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang F, Wang Z, Li G, Wang S, Liu D, Zhang M, Zhao M, Yang W, Wang J (2017) Inter-heterogeneity and intra-heterogeneity of α(v)β(3) in non-small cell lung cancer and small cell lung cancer patients as revealed by (68)Ga-RGD(2) PET imaging. European journal of nuclear medicine and molecular imaging 44:1520–1528

    CAS  PubMed  Google Scholar 

  22. Kakkad S, Krishnamachary B, Jacob D, Pacheco-Torres J, Goggins E, Bharti SK, Penet MF, Bhujwalla ZM (2019) Molecular and functional imaging insights into the role of hypoxia in cancer aggression. Cancer metastasis reviews 38:51–64

    PubMed  PubMed Central  Google Scholar 

  23. Arvold ND, Heidari P, Kunawudhi A, Sequist LV, Mahmood U (2016) Tumor hypoxia response after targeted therapy in EGFR-mutant non-small cell lung cancer: proof of concept for FMISO-PET. Technology in cancer research & treatment 15:234–242

    CAS  Google Scholar 

  24. Vera P, Thureau S, Chaumet-Riffaud P, Modzelewski R, Bohn P, Vermandel M, Hapdey S, Pallardy A, Mahé MA, Lacombe M, Boisselier P, Guillemard S, Olivier P, Beckendorf V, Salem N, Charrier N, Chajon E, Devillers A, Aide N, Danhier S, Denis F, Muratet JP, Martin E, Riedinger AB, Kolesnikov-Gauthier H, Dansin E, Massabeau C, Courbon F, Farcy Jacquet MP, Kotzki PO, Houzard C, Mornex F, Vervueren L, Paumier A, Fernandez P, Salaun M, Dubray B (2017) Phase II study of a radiotherapy total dose increase in hypoxic lesions identified by (18)F-misonidazole PET/CT in patients with non-small cell lung carcinoma (RTEP5 Study). Journal of Nuclear Medicine 58:1045–1053

    CAS  PubMed  Google Scholar 

  25. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, Welch MJ, Siegel BA (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. European journal of nuclear medicine and molecular imaging 30:844–850

    CAS  PubMed  Google Scholar 

  26. Lopci E, Grassi I, Rubello D, Colletti PM, Cambioli S, Gamboni A, Salvi F, Cicoria G, Lodi F, Dazzi C, Mattioli S, Fanti S (2016) Prognostic evaluation of disease outcome in solid tumors investigated with 64Cu-ATSM PET/CT. Clinical nuclear medicine 41:e87–e92

    PubMed  Google Scholar 

  27. Langfort R, Rudzinski P, Burakowska B (2010) Pulmonary neuroendocrine tumors. The spectrum of histologic subtypes and current concept on diagnosis and treatment. Pneumonol Alergol Pol 78:33–46

    PubMed  Google Scholar 

  28. Sharma R, Wang WM, Yusuf S, Evans J, Ramaswami R, Wernig F, Frilling A, Mauri F, al-Nahhas A, Aboagye EO, Barwick TD (2019) (68)Ga-DOTATATE PET/CT parameters predict response to peptide receptor radionuclide therapy in neuroendocrine tumours. Radiother Oncol 141:108–115

    CAS  PubMed  Google Scholar 

  29. Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M, Bomanji JB (2009) A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 50:1927–1932

    PubMed  Google Scholar 

  30. Zidan L, Iravani A, Oleinikov K, Ben-Haim S, Gross DJ, Meirovitz A, Maimon O, Akhurst T, Michael M, Hicks RJ, Grozinsky-Glasberg S, Kong G (2021) Efficacy and safety of (177)Lu-DOTATATE in lung neuroendocrine tumors: a bi-center study. J Nucl Med.:jnumed.120.260760

  31. Shah V, Kochar P (2018) Brain cancer: implication to disease, therapeutic strategies and tumor targeted drug delivery approaches. Recent Pat Anticancer Drug Discov 13:70–85

    CAS  PubMed  Google Scholar 

  32. Iagaru A, Mosci C, Mittra E, Zaharchuk G, Gambhir SS (2015) Glioblastoma multiforme recurrence: an exploratory study of 18F FPPRGD2 PET/CT. Radiology 277:141550

    Google Scholar 

  33. Rainer E, Wang H, Traubweidinger T et al (2018) The prognostic value of [123I]-vascular endothelial growth factor ([123I]-VEGF) in glioma. European journal of Nuclear Medicine and Molecular Imaging 45:2396–2403

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jansen M, Se VVZ, Van Vuurden DG et al (2017) Molecular drug imaging: 89Zr-bevacizumab PET in children with diffuse intrinsic pontine glioma. Journal of Nuclear Medicine 58:711–716

    CAS  PubMed  Google Scholar 

  35. Keu KV, Witney TH, Yaghoubi S, et al. (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 9

  36. den Hollander MW, Bensch F, Glaudemans AW et al (2015) TGF-beta antibody uptake in recurrent high-grade glioma imaged with 89Zr-Fresolimumab PET. J Nucl Med 56:1310–1314

    Google Scholar 

  37. Matsuda M, Ishikawa E, Yamamoto T, Hatano K, Joraku A, Iizumi Y, Masuda Y, Nishiyama H, Matsumura A (2018) Potential use of prostate specific membrane antigen (PSMA) for detecting the tumor neovasculature of brain tumors by PET imaging with (89)Zr-Df-IAB2M anti-PSMA minibody. J Neurooncol 138:581–589

    CAS  PubMed  Google Scholar 

  38. Lopci E, Franzese C, Grimaldi M, Zucali PA, Navarria P, Simonelli M, Bello L, Scorsetti M, Chiti A (2015) Imaging biomarkers in primary brain tumours. European journal of nuclear medicine and molecular imaging 42:597–612

    CAS  PubMed  Google Scholar 

  39. Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, Yamaguchi S, Houkin K, Tanaka S, Kuge Y, Tamaki N (2012) 18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. European journal of nuclear medicine and molecular imaging 39:760–770

    CAS  PubMed  Google Scholar 

  40. Bekaert L, Valable S, Lechapt-Zalcman E, Ponte K, Collet S, Constans JM, Levallet G, Bordji K, Petit E, Branger P, Emery E, Manrique A, Barré L, Bernaudin M, Guillamo JS (2017) [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis. Eur J Nucl Med Mol Imaging 44:1383–1392

    CAS  PubMed  Google Scholar 

  41. Spence AM, Muzi M, Swanson KR, O'Sullivan F, Rockhill JK, Rajendran JG, Adamsen TCH, Link JM, Swanson PE, Yagle KJ, Rostomily RC, Silbergeld DL, Krohn KA (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14:2623–2630

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Toriihara A, Ohtake M, Tateishi K, Hino-Shishikura A, Yoneyama T, Kitazume Y, Inoue T, Kawahara N, Tateishi U (2018) Prognostic implications of (62)Cu-diacetyl-bis (N(4)-methylthiosemicarbazone) PET/CT in patients with glioma. Ann Nucl Med 32:264–271

    CAS  PubMed  Google Scholar 

  43. Hope TA, Calais J (2021) PSMA-targeted radiopharmaceutical therapy in patients with metastatic castration-resistant prostate cancer. Lancet. 397:768–769

    PubMed  Google Scholar 

  44. Kratochwil C, Giesel FL, Stefanova M, Benešová M, Bronzel M, Afshar-Oromieh A, Mier W, Eder M, Kopka K, Haberkorn U (2016) PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med 57:1170–1176

    CAS  PubMed  Google Scholar 

  45. Schwarzenboeck SM, Rauscher I, Bluemel C, Fendler WP, Rowe SP, Pomper MG, Asfhar-Oromieh A, Herrmann K, Eiber M (2017) PSMA ligands for PET imaging of prostate cancer. J Nucl Med 58:1545–1552

    CAS  PubMed  Google Scholar 

  46. Hicks RM, Simko JP, Westphalen AC, Nguyen HG, Greene KL, Zhang L, Carroll PR, Hope TA (2018) Diagnostic accuracy of Ga-PSMA-11 PET/MRI compared with multiparametric MRI in the detection of prostate cancer. Radiology 289:730–737

    PubMed  Google Scholar 

  47. Kalapara AA, Nzenza T, Pan HYC, Ballok Z, Ramdave S, O'Sullivan R, Ryan A, Cherk M, Hofman MS, Konety BR, Lawrentschuk N, Bolton D, Murphy DG, Grummet JP, Frydenberg M (2020) Detection and localisation of primary prostate cancer using (68) gallium prostate-specific membrane antigen positron emission tomography/computed tomography compared with multiparametric magnetic resonance imaging and radical prostatectomy specimen pathology. BJU Int 126:83–90

    CAS  PubMed  Google Scholar 

  48. Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Eiber MJJoU (2015) Diagnostic efficacy of 68Gallium-PSMA-PET compared to conventional imaging in lymph node staging of 130 consecutive patients with intermediate to high-risk prostate cancer. 195:1436-1443.

  49. Pandit-Taskar N, O'Donoghue JA, Durack JC, Lyashchenko SK, Cheal SM, Beylergil V, Lefkowitz RA, Carrasquillo JA, Martinez DF, Fung AM, Solomon SB, Gönen M, Heller G, Loda M, Nanus DM, Tagawa ST, Feldman JL, Osborne JR, Lewis JS, Reuter VE, Weber WA, Bander NH, Scher HI, Larson SM, Morris MJ (2015) A phase I/II study for analytic validation of 89Zr-J591 ImmunoPET as a molecular imaging agent for metastatic prostate cancer. Clin Cancer Res 21:5277–5285

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Boreta L, Gadzinski AJ, Wu SY, Xu M, Greene K, Quanstrom K, Nguyen HG, Carroll PR, Hope TA, Feng FY (2019) Location of recurrence by gallium-68 PSMA-11 PET scan in prostate cancer patients eligible for salvage radiotherapy. Urology 129:165–171

    PubMed  Google Scholar 

  51. Sonni I, Eiber M, Fendler WP, Alano RM, Vangala SS, Kishan AU, Nickols N, Rettig MB, Reiter RE, Czernin J, Calais J (2020) Impact of (68)Ga-PSMA-11 PET/CT on staging and management of prostate cancer patients in various clinical settings: a prospective single-center study. J Nucl Med 61:1153–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Werner RA, Derlin T, Lapa C, et al. (2020) F-Labeled, PSMA-targeted radiotracers: leveraging the advantages of radiofluorination for prostate cancer molecular imaging. Theranostics 10.

  53. Giesel FL, Kesch C, Yun M, Cardinale J, Haberkorn U, Kopka K, Kratochwil C, Hadaschik BA (2017) 18F-PSMA-1007 PET/CT detects micrometastases in a patient with biochemically recurrent prostate cancer. Clin Genitourin Cancer 15:e497–e499

    PubMed  Google Scholar 

  54. Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schäfers M, Bögemann M, Weckesser M (2018) Diagnostic performance of F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging 45:2055–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Song H, Harrison C, Duan H, Guja K, Hatami N, Franc BL, Moradi F, Aparici CM, Davidzon GA, Iagaru A (2020) Prospective evaluation of F-DCFPyL PET/CT in biochemically recurrent prostate cancer in an academic center: a focus on disease localization and changes in management. J Nucl Med 61:546–551

    CAS  PubMed  Google Scholar 

  56. Treglia G, Annunziata S, Pizzuto DA, Giovanella L, Prior JO, Ceriani L (2019) Detection rate of F-labeled PSMA PET/CT in biochemical recurrent prostate cancer: a systematic review and a meta-analysis. Cancers (Basel) 11.

  57. Giesel FL, Will L, Lawal I, Lengana T, Kratochwil C, Vorster M, Neels O, Reyneke F, Haberkon U, Kopka K, Sathekge M (2018) Intraindividual comparison of (18)F-PSMA-1007 and (18)F-DCFPyL PET/CT in the prospective evaluation of patients with newly diagnosed prostate carcinoma: a pilot study. J Nucl Med 59:1076–1080

    CAS  PubMed  Google Scholar 

  58. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, Iravani A, Kong G, Ravi Kumar A, Murphy DG, Eu P, Jackson P, Scalzo M, Williams SG, Sandhu S (2018) [Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19:825–833

    CAS  PubMed  Google Scholar 

  59. Jyoti Roy BW, McKinney Y et al (2020) [18F]DCFPyL associated radioactivity in patient saliva samples. Journal of Nuclear Medicine 61(supplement 1):477

    Google Scholar 

  60. Sathekge M, Bruchertseifer F, Knoesen O, Reyneke F, Lawal I, Lengana T, Davis C, Mahapane J, Corbett C, Vorster M, Morgenstern A (2019) (225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 46:129–138

    CAS  PubMed  Google Scholar 

  61. Feuerecker B, Tauber R, Knorr K, Heck M, Beheshti A, Seidl C, Bruchertseifer F, Pickhard A, Gafita A, Kratochwil C, Retz M, Gschwend JE, Weber WA, D’Alessandria C, Morgenstern A, Eiber M (2021) Activity and adverse events of actinium-225-PSMA-617 in advanced metastatic castration-resistant prostate cancer after failure of lutetium-177-PSMA. Eur Urol 79:343–350

    CAS  PubMed  Google Scholar 

  62. Taieb D, Foletti JM, Bardies M, Rocchi P, Hicks RJ, Haberkorn U (2018) PSMA-targeted radionuclide therapy and salivary gland toxicity: why does it matter? J Nucl Med 59:747–748

    PubMed  Google Scholar 

  63. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, Kopka K, Apostolidis C, Haberkorn U, Morgenstern A (2016) 225Ac-PSMA-617 for PSMA-targeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 57:1941–1944

    CAS  PubMed  Google Scholar 

  64. Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, Morgenstern A (2018) Targeted alpha-therapy of metastatic castration-resistant prostate cancer with (225)Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med 59:795–802

    CAS  PubMed  Google Scholar 

  65. Kratochwil C, Haberkorn U, Giesel FL (2020) (225)Ac-PSMA-617 for therapy of prostate cancer. Semin Nucl Med 50:133–140

    PubMed  Google Scholar 

  66. Khreish F, Ebert N, Ries M, Maus S, Rosar F, Bohnenberger H, Stemler T, Saar M, Bartholomä M, Ezziddin S (2020) (225)Ac-PSMA-617/(177)Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: pilot experience. Eur J Nucl Med Mol Imaging 47:721–728

    CAS  PubMed  Google Scholar 

  67. Satapathy S, Sood A, Das CK, Mittal BR (2021) Evolving role of (225)Ac-PSMA radioligand therapy in metastatic castration-resistant prostate cancer—a systematic review and meta-analysis. Prostate Cancer Prostatic Dis.

  68. Bhargava P, Ravizzini G, Chapin BF, Kundra V (2020) Imaging biochemical recurrence after prostatectomy: where are we headed? AJR Am J Roentgenol 214:1248–1258

    PubMed  Google Scholar 

  69. Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, Korsan KA, Kieboom J, Tade FI, Odewole O, Chau A, Ward P, Goodman MM, Fanti S, Schuster DM, Willoch F (2017) Multisite experience of the safety, detection rate and diagnostic performance of fluciclovine (F) positron emission tomography/computerized tomography imaging in the staging of biochemically recurrent prostate cancer. J Urol 197:676–683

    PubMed  Google Scholar 

  70. Bin X, Yong S, Kong Q-F et al (2019) Diagnostic performance of PET/CT using 18F-FACBC in prostate cancer: a meta-analysis. Front Oncol 9:1438

    PubMed  Google Scholar 

  71. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, Malizia C, Ferrari M, Rigatti P, Fonti C, Martorana G, Fanti S (2016) (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging 43:1601–1610

    CAS  PubMed  Google Scholar 

  72. Li R, Ravizzini GC, Gorin MA, Maurer T, Eiber M, Cooperberg MR, Alemozzaffar M, Tollefson MK, Delacroix SE, Chapin BF (2018) The use of PET/CT in prostate cancer. Prostate Cancer Prostatic Dis 21:4–21

    PubMed  Google Scholar 

  73. Lin TY, Li Y, Liu Q, Chen JL, Zhang H, Lac D, Zhang H, Ferrara KW, Wachsmann-Hogiu S, Li T, Airhart S, deVere White R, Lam KS, Pan CX (2016) Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer. Biomaterials 104:339–351

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ulaner GA, Riedl CC, Dickler MN, Jhaveri K, Pandit-Taskar N, Weber W (2016) Molecular imaging of biomarkers in breast cancer. J Nucl Med 57(Suppl 1):53S–59S

    CAS  PubMed  Google Scholar 

  75. Orlando L, Schiavone P, Fedele P, Calvani N, Nacci A, Rizzo P, Marino A, D'Amico M, Sponziello F, Mazzoni E, Cinefra M, Fazio N, Maiello E, Silvestris N, Colucci G, Cinieri S (2010) Molecularly targeted endocrine therapies for breast cancer. Cancer Treat Rev 36(Suppl 3):S67–S71

    CAS  PubMed  Google Scholar 

  76. Gemignani ML, Patil S, Seshan VE, Sampson M, Humm JL, Lewis JS, Brogi E, Larson SM, Morrow M, Pandit-Taskar N (2013) Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer. J Nucl Med 54:1697–1702

    CAS  PubMed  Google Scholar 

  77. Van Kruchten M, de Vries EG, Glaudemans AW et al (2015) Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer Discov 5:72–81

    PubMed  Google Scholar 

  78. Liu C, Gong C, Liu S, Zhang Y, Zhang Y, Xu X, Yuan H, Wang B, Yang Z (2019) (18)F-FES PET/CT influences the staging and management of patients with newly diagnosed estrogen receptor-positive breast cancer: a retrospective comparative study with (18)F-FDG PET/CT. Oncologist 24:e1277–e1285

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gaykema SB, Schroder CP, Vitfell-Rasmussen J et al (2014) 89Zr-trastuzumab and 89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Cancer Res 20:3945–3954

    CAS  PubMed  Google Scholar 

  80. Gebhart G, Lamberts LE, Wimana Z, Garcia C, Emonts P, Ameye L, Stroobants S, Huizing M, Aftimos P, Tol J, Oyen WJG, Vugts DJ, Hoekstra OS, Schröder CP, Menke-van der Houven van Oordt CW, Guiot T, Brouwers AH, Awada A, de Vries EGE, Flamen P (2016) Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann Oncol 27:619–624

    CAS  PubMed  Google Scholar 

  81. Ulaner GA, Hyman DM, Ross DS, Corben A, Chandarlapaty S, Goldfarb S, McArthur H, Erinjeri JP, Solomon SB, Kolb H, Lyashchenko SK, Lewis JS, Carrasquillo JA (2016) Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT. J Nucl Med 57:1523–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ulaner GA, Lyashchenko SK, Riedl C, Ruan S, Zanzonico PB, Lake D, Jhaveri K, Zeglis B, Lewis JS, O’Donoghue JA (2018) First-in-human human epidermal growth factor receptor 2-targeted imaging using (89)Zr-Pertuzumab PET/CT: dosimetry and clinical application in patients with breast cancer. J Nucl Med 59:900–906

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sorensen J, Velikyan I, Sandberg D et al (2016) Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics 6:262–271

    PubMed  PubMed Central  Google Scholar 

  84. Mestel R (2017) Cancer: imaging with antibodies. Nature 543:743–746

    CAS  PubMed  Google Scholar 

  85. Dammes N, Peer D (2020) Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics 10:938–955

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Joshi BP, Wang TD (2018) Targeted optical imaging agents in cancer: focus on clinical applications. Contrast Media Mol Imaging 2018:2015237

    PubMed  PubMed Central  Google Scholar 

  87. Chen H, Niu G, Wu H, Chen X (2016) Clinical application of radiolabeled RGD peptides for PET imaging of integrin alphavbeta3. Theranostics 6:78–92

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nährig J, Watzlowik P, Wester HJ, Harbeck N, Schwaiger M (2008) Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 49:255–259

    PubMed  Google Scholar 

  89. Wu J, Wang S, Zhang X, Teng Z, Wang J, Yung BC, Niu G, Zhu H, Lu G, Chen X (2018) (18)F-Alfatide II PET/CT for identification of breast cancer: a preliminary clinical study. J Nucl Med 59:1809–1816

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang J, Mao F, Niu G, Peng L, Lang L, Li F, Ying H, Wu H, Pan B, Zhu Z, Chen X (2018) (68)Ga-BBN-RGD PET/CT for GRPR and Integrin alphavbeta3 imaging in patients with breast cancer. Theranostics 8:1121–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li L, Ma L, Shang D, Liu Z, Yu Q, Wang S, Teng X, Zhang Q, Hu X, Zhao W, Hou W, Jin J, Kong FM, Yu J, Yuan S (2019) Pretreatment PET/CT imaging of angiogenesis based on (18)F-RGD tracer uptake may predict antiangiogenic response. Eur J Nucl Med Mol Imaging 46:940–947

    PubMed  Google Scholar 

  92. Morgat C, MacGrogan G, Brouste V, Vélasco V, Sévenet N, Bonnefoi H, Fernandez P, Debled M, Hindié E (2017) Expression of gastrin-releasing peptide receptor in breast cancer and its association with pathologic, biologic, and clinical parameters: a study of 1,432 primary tumors. J Nucl Med 58:1401–1407

    CAS  PubMed  Google Scholar 

  93. Maina T, Bergsma H, Kulkarni HR, Mueller D, Charalambidis D, Krenning EP, Nock BA, de Jong M, Baum RP (2016) Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [(6)(8)Ga]SB3 and PET/CT. Eur J Nucl Med Mol Imaging 43:964–973

    CAS  PubMed  Google Scholar 

  94. Stoykow C, Erbes T, Maecke HR, Bulla S, Bartholomä M, Mayer S, Drendel V, Bronsert P, Werner M, Gitsch G, Weber WA, Stickeler E, Meyer PT (2016) Gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist (68)Ga-RM2 and PET. Theranostics 6:1641–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zang J, Mao F, Wang H, Zhang J, Liu Q, Peng L, Li F, Lang L, Chen X, Zhu Z (2018) 68Ga-NOTA-RM26 PET/CT in the evaluation of breast cancer: a pilot prospective study. Clin Nucl Med 43:663–669

    PubMed  PubMed Central  Google Scholar 

  96. Dehdashti F, Laforest R, Gao F, Aft RL, Dence CS, Zhou D, Shoghi KI, Siegel BA, Katzenellenbogen JA, Welch MJ (2012) Assessment of progesterone receptors in breast carcinoma by PET with 21-18F-fluoro-16alpha,17alpha-[(R)-(1'-alpha-furylmethylidene)dioxy]-19-norpregn- 4-ene-3,20-dione. J Nucl Med 53:363–370

    CAS  PubMed  Google Scholar 

  97. Giesel FL, Kratochwil C, Lindner T, Marschalek MM, Loktev A, Lehnert W, Debus J, Jäger D, Flechsig P, Altmann A, Mier W, Haberkorn U (2019) (68)Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med 60:386–392

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Roy J, Hettiarachchi SU, Kaake M, Mukkamala R, Low PS (2020) Design and validation of fibroblast activation protein alpha targeted imaging and therapeutic agents. Theranostics 10:5778–5789

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Debie P, Hernot S (2019) Emerging fluorescent molecular tracers to guide intra-operative surgical decision-making. Front Pharmacol 10:510

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Whitley MJ, Cardona DM, Lazarides AL et al (2016) A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med 8:320ra324

    Google Scholar 

  101. Smith BL, Lanahan CR, Specht MC, Kelly BN, Brown C, Strasfeld DB, Ferrer JM, Rai U, Tang R, Rice-Stitt T, Biernacka A, Brachtel EF, Gadd MA (2020) Feasibility study of a novel protease-activated fluorescent imaging system for real-time, intraoperative detection of residual breast cancer in breast conserving surgery. Ann Surg Oncol 27:1854–1861

    PubMed  PubMed Central  Google Scholar 

  102. Poellinger A, Martin JC, Ponder SL, Freund T, Hamm B, Bick U, Diekmann F (2008) Near-infrared laser computed tomography of the breast first clinical experience. Acad Radiol 15:1545–1553

    PubMed  Google Scholar 

  103. Hagen A, Grosenick D, Macdonald R, Rinneberg H, Burock S, Warnick P, Poellinger A, Schlag PM (2009) Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions. Opt Express 17:17016–17033

    CAS  PubMed  Google Scholar 

  104. Poellinger A, Burock S, Grosenick D, Hagen A, Lüdemann L, Diekmann F, Engelken F, Macdonald R, Rinneberg H, Schlag PM (2011) Breast cancer: early- and late-fluorescence near-infrared imaging with indocyanine green—a preliminary study. Radiology 258:409–416

    PubMed  Google Scholar 

  105. Zeng HC, Hu JL, Bai JW, Zhang GJ (2019) Detection of sentinel lymph nodes with near-infrared imaging in malignancies. Mol Imaging Biol 21:219–227

    CAS  PubMed  Google Scholar 

  106. Grischke EM, Rohm C, Hahn M, Helms G, Brucker S, Wallwiener D (2015) ICG fluorescence technique for the detection of sentinel lymph nodes in breast cancer: results of a prospective open-label clinical trial. Geburtshilfe Frauenheilkd 75:935–940

    PubMed  PubMed Central  Google Scholar 

  107. Liu J, Huang L, Wang N, Chen P (2017) Indocyanine green detects sentinel lymph nodes in early breast cancer. J Int Med Res 45:514–524

    PubMed  PubMed Central  Google Scholar 

  108. Agrawal SK, Hashlamoun I, Karki B, Sharma A, Arun I, Ahmed R (2020) Diagnostic performance of indocyanine green plus methylene blue versus radioisotope plus methylene blue dye method for sentinel lymph node biopsy in node-negative early breast cancer. JCO Glob Oncol 6:1225–1231

    PubMed  Google Scholar 

  109. Poellinger A, Persigehl T, Mahler M, Bahner M, Ponder SL, Diekmann F, Bremer C, Moesta T (2011) Near-infrared imaging of the breast using omocianine as a fluorescent dye: results of a placebo-controlled, clinical, multicenter trial. Invest Radiol 46:697–704

    CAS  PubMed  Google Scholar 

  110. Tawfik MMH, Monib AM, Yassin A et al (2020) Comparison between RECIST and PERCIST criteria in therapeutic response assessment in cases of lymphoma. Egypt J Radiol Nucl Med 51

  111. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, Maio M, Binder M, Bohnsack O, Nichol G, Humphrey R, Hodi FS (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

    CAS  PubMed  Google Scholar 

  112. Mankoff DA, Farwell MD, Clark AS, Pryma DA (2017) Making molecular imaging a clinical tool for precision oncology: a review. JAMA Oncol 3:695–701

    PubMed  Google Scholar 

  113. O JH, Lodge MA, Wahl RL (2016) Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology 280:576–584

    PubMed  Google Scholar 

  114. Bahce I, Yaqub M, Errami H, Schuit RC, Schober P, Thunnissen E, Windhorst AD, Lammertsma AA, Smit EF, Hendrikse NH (2016) Effects of erlotinib therapy on [(11)C]erlotinib uptake in EGFR mutated, advanced NSCLC. EJNMMI Res 6:10

    PubMed  PubMed Central  Google Scholar 

  115. Yaqub M, Bahce I, Voorhoeve C, Schuit RC, Windhorst AD, Hoekstra OS, Boellaard R, Hendrikse NH, Smit EF, Lammertsma AA (2016) Quantitative and simplified analysis of 11C-erlotinib studies. J Nucl Med 57:861–866

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81627901, 81471724), the Tou-Yan Innovation Team Program of the Heilongjiang Province (2019-15), National Basic Research Program of China (2015CB931800), and the Key Laboratory of Molecular Imaging Foundation (College of Heilongjiang Province).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilin Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1679 kb)

ESM 2

(PDF 1681 kb)

ESM 3

(PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Ke, M., Liu, X. et al. Molecular Imaging, How Close to Clinical Precision Medicine in Lung, Brain, Prostate and Breast Cancers. Mol Imaging Biol 24, 8–22 (2022). https://doi.org/10.1007/s11307-021-01631-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-021-01631-y

Key words

Navigation