Skip to main content

Advertisement

Log in

Differentiating Radiation Necrosis from Brain Tumor Using Hyperpolarized Carbon-13 MR Metabolic Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Differentiation between radiation-induced necrosis and tumor recurrence is crucial to determine proper management strategies but continues to be one of the central challenges in neuro-oncology. We hypothesized that hyperpolarized 13C MRI, a unique technique to measure real-time in vivo metabolism, would distinguish radiation necrosis from tumor on the basis of cell-intrinsic metabolic differences. The purpose of this study was to explore the feasibility of using hyperpolarized [1-13C]pyruvate for differentiating radiation necrosis from brain tumors.

Procedures

Radiation necrosis was initiated by employing a CT-guided 80-Gy single-dose irradiation of a half cerebrum in mice (n = 7). Intracerebral tumor was modeled with two orthotopic mouse models: GL261 glioma (n = 6) and Lewis lung carcinoma (LLC) metastasis (n = 7). 13C 3D MR spectroscopic imaging data were acquired following hyperpolarized [1-13C]pyruvate injection approximately 89 and 14 days after treatment for irradiated and tumor-bearing mice, respectively. The ratio of lactate to pyruvate (Lac/Pyr), normalized lactate, and pyruvate in contrast-enhancing lesion was compared between the radiation-induced necrosis and brain tumors. Histopathological analysis was performed from resected brains.

Results

Conventional MRI exhibited typical radiographic features of radiation necrosis and brain tumor with large areas of contrast enhancement and T2 hyperintensity in all animals. Normalized lactate in radiation necrosis (0.10) was significantly lower than that in glioma (0.26, P = .004) and LLC metastatic tissue (0.25, P = .00007). Similarly, Lac/Pyr in radiation necrosis (0.18) was significantly lower than that in glioma (0.55, P = .00008) and LLC metastasis (0.46, P = .000008). These results were consistent with histological findings where tumor-bearing brains were highly cellular, while irradiated brains exhibited pathological markers consistent with reparative changes from radiation necrosis.

Conclusion

Hyperpolarized 13C MR metabolic imaging of pyruvate is a noninvasive imaging method that differentiates between radiation necrosis and brain tumors, providing a groundwork for further clinical investigation and translation for the improved management of patients with brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Wen PY, Chang SM, Van den Bent MJ, Vogelbaum MA, Macdonald DR, Lee EQ (2017) Response assessment in neuro-oncology clinical trials. J Clin Oncol 35:2439–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Verma N, Cowperthwaite MC, Burnett MG, Markey MK (2013) Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro-Oncology 15:515–534

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH et al (2019) Hyperpolarized (13)C MRI: path to clinical translation in oncology. Neoplasia (New York, NY) 21:1–16

    Article  Google Scholar 

  4. Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB (2019) Hyperpolarized (13)C MRI: state of the art and future directions. Radiology 291:273–284

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100:10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Autry AW, Hashizume R, James CD, Larson PEZ, Vigneron DB, Park I (2018) Measuring tumor metabolism in pediatric diffuse intrinsic pontine glioma using hyperpolarized carbon-13 MR metabolic imaging. Contrast Media Mol Imaging 2018:3215658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Park I, Larson PE, Zierhut ML et al (2010) Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-Oncology 12:133–144

    Article  PubMed  PubMed Central  Google Scholar 

  8. Day SE, Kettunen MI, Cherukuri MK, Mitchell JB, Lizak MJ, Morris HD, Matsumoto S, Koretsky AP, Brindle KM (2011) Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1- 13C]pyruvate and 13C magnetic resonance spectroscopic imaging. Magn Reson Med 65:557–563

    Article  CAS  PubMed  Google Scholar 

  9. Michel KA, Zielinski R, Walker CM et al (2019) Hyperpolarized pyruvate MR spectroscopy depicts glycolytic inhibition in a mouse model of glioma. Radiology 293:168–173

    Article  PubMed  PubMed Central  Google Scholar 

  10. Park I, Bok R, Ozawa T, Phillips JJ, James CD, Vigneron DB, Ronen SM, Nelson SJ (2011) Detection of early response to temozolomide treatment in brain tumors using hyperpolarized 13C MR metabolic imaging. J Magn Reson Imaging 33:1284–1290

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park I, Mukherjee J, Ito M, Chaumeil MM, Jalbert LE, Gaensler K, Ronen SM, Nelson SJ, Pieper RO (2014) Changes in pyruvate metabolism detected by magnetic resonance imaging are linked to DNA damage and serve as a sensor of temozolomide response in glioblastoma cells. Cancer Res 74:7115–7124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park JM, Spielman DM, Josan S, Jang T, Merchant M, Hurd RE, Mayer D, Recht LD (2016) Hyperpolarized (13)C-lactate to (13)C-bicarbonate ratio as a biomarker for monitoring the acute response of anti-vascular endothelial growth factor (anti-VEGF) treatment. NMR Biomed 29:650–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park I, Hu S, Bok R, Ozawa T, Ito M, Mukherjee J, Phillips JJ, James CD, Pieper RO, Ronen SM, Vigneron DB, Nelson SJ (2013) Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging. Magn Reson Med 70:33–39

    Article  CAS  PubMed  Google Scholar 

  14. Park I, Lupo JM, Nelson SJ (2019) Correlation of tumor perfusion between carbon-13 imaging with hyperpolarized pyruvate and dynamic susceptibility contrast MRI in pre-clinical model of Glioblastoma. Mol Imaging Biol 21:626–632

    Article  CAS  PubMed  Google Scholar 

  15. Crane JC, Olson MP, Nelson SJ (2013) SIVIC: open-source, standards-based software for DICOM MR spectroscopy workflows. Int J Biomed Imaging 2013:169526

    Article  PubMed  PubMed Central  Google Scholar 

  16. Warburg O (1956) On the origin of cancer cells. Science (New York, NY) 123:309–314

    Article  CAS  Google Scholar 

  17. Nakamura JL, Verhey LJ, Smith V, Petti PL, Lamborn KR, Larson DA, Wara WM, McDermott MW, Sneed PK (2001) Dose conformity of gamma knife radiosurgery and risk factors for complications. Int J Radiat Oncol Biol Phys 51:1313–1319

    Article  CAS  PubMed  Google Scholar 

  18. Sneed PK, Mendez J, Vemer-van den Hoek JG et al (2015) Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg 123:373–386

    Article  PubMed  Google Scholar 

  19. Münter MW, Karger CP, Reith W, Schneider HM, Peschke P, Debus J (1999) Delayed vascular injury after single high-dose irradiation in the rat brain: histologic immunohistochemical, and angiographic studies. Radiology 212:475–482

    Article  PubMed  Google Scholar 

  20. Niranjan A, Gobbel GT, Kondziolka D, Flickinger JC, Lunsford LD (2004) Experimental radiobiological investigations into radiosurgery: present understanding and future directions. Neurosurgery 55:495–504 discussion 504-495

    Article  PubMed  Google Scholar 

  21. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    Article  PubMed  Google Scholar 

  22. Sundgren PC, Fan X, Weybright P, Welsh RC, Carlos RC, Petrou M, McKeever PE, Chenevert TL (2006) Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging 24:1131–1142

    Article  CAS  PubMed  Google Scholar 

  23. Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, Cha S (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang J, Wang AM, Shetty A, Maitz AH, Yan D, Doyle D, Richey K, Park S, Pieper DR, Chen PY, Grills IS (2011) Differentiation between intra-axial metastatic tumor progression and radiation injury following fractionated radiation therapy or stereotactic radiosurgery using MR spectroscopy, perfusion MR imaging or volume progression modeling. Magn Reson Imaging 29:993–1001

    Article  PubMed  Google Scholar 

  25. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B, Blakeley J, Laterra J, van Zijl PCM (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134

    Article  CAS  PubMed  Google Scholar 

  26. Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911

    CAS  PubMed  Google Scholar 

  27. Rachinger W, Goetz C, Popperl G et al (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511 discussion 505-511

    Article  PubMed  Google Scholar 

  28. Van Laere K, Ceyssens S, Van Calenbergh F et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51

    Article  CAS  PubMed  Google Scholar 

  29. Wilson DM, Keshari KR, Larson PE et al (2010) Multi-compound polarization by DNP allows simultaneous assessment of multiple enzymatic activities in vivo. J Magn Reson (San Diego, Calif : 1997) 205:141–147

    Article  CAS  Google Scholar 

  30. Hansen AE, Gutte H, Holst P, Johannesen HH, Rahbek S, Clemmensen AE, Larsen MME, Schøier C, Ardenkjaer-Larsen J, Klausen TL, Kristensen AT, Kjaer A (2018) Combined hyperpolarized (13)C-pyruvate MRS and (18)F-FDG PET (hyperPET) estimates of glycolysis in canine cancer patients. Eur J Radiol 103:6–12

    Article  PubMed  Google Scholar 

  31. Hundshammer C, Braeuer M, Müller CA, Hansen AE, Schillmaier M, Düwel S, Feuerecker B, Glaser SJ, Haase A, Weichert W, Steiger K, Cabello J, Schilling F, Hövener JB, Kjær A, Nekolla SG, Schwaiger M (2018) Simultaneous characterization of tumor cellularity and the Warburg effect with PET, MRI and hyperpolarized (13)C-MRSI. Theranostics 8:4765–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Witney TH, Kettunen MI, Day SE et al (2009) A comparison between radiolabeled fluorodeoxyglucose uptake and hyperpolarized (13)C-labeled pyruvate utilization as methods for detecting tumor response to treatment. Neoplasia (New York, NY) 11:574–582 571 p following 582

    Article  CAS  Google Scholar 

  33. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925

    Article  CAS  PubMed  Google Scholar 

  34. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916–921

    CAS  PubMed  Google Scholar 

  35. Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8:94–107

    Article  CAS  PubMed  Google Scholar 

  36. Kurhanewicz J, Vigneron DB, Brindle K et al (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia (New York, NY) 13:81–97

    Article  CAS  Google Scholar 

  37. Kugel H, Heindel W, Ernestus RI, Bunke J, du Mesnil R, Friedmann G (1992) Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 183:701–709

    Article  CAS  PubMed  Google Scholar 

  38. Dodd MS, Ball V, Bray R, Ashrafian H, Watkins H, Clarke K, Tyler DJ (2013) In vivo mouse cardiac hyperpolarized magnetic resonance spectroscopy. J Cardiovasc Magn Reson 15:19

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Kim H, Bok R, et al. Pyruvate to lactate metabolic changes during neurodevelopment measured dynamically using hyperpolarized 13C imaging in juvenile murine brain

  40. Grist JT, McLean MA, Riemer F et al (2019) Quantifying normal human brain metabolism using hyperpolarized [1-(13)C]pyruvate and magnetic resonance imaging. NeuroImage 189:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miloushev VZ, Granlund KL, Boltyanskiy R, Lyashchenko SK, DeAngelis LM, Mellinghoff IK, Brennan CW, Tabar V, Yang TJ, Holodny AI, Sosa RE, Guo YWW, Chen AP, Tropp J, Robb F, Keshari KR (2018) Metabolic imaging of the human brain with hyperpolarized (13)C pyruvate demonstrates (13)C lactate production in brain tumor patients. Cancer Res 78:3755–3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park I, Larson PEZ, Gordon JW, Carvajal L, Chen HY, Bok R, van Criekinge M, Ferrone M, Slater JB, Xu D, Kurhanewicz J, Vigneron DB, Chang S, Nelson SJ (2018) Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med 80:864–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Autry AW, Gordon JW, Chen HY, LaFontaine M, Bok R, van Criekinge M, Slater JB, Carvajal L, Villanueva-Meyer JE, Chang SM, Clarke JL, Lupo JM, Xu D, Larson PEZ, Vigneron DB, Li Y (2020) Characterization of serial hyperpolarized (13)C metabolic imaging in patients with glioma. NeuroImage Clin 27:102323

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Chung-Man Moon, Biruk Tesfaye Birhanu, and Nguyen Trong Nguyen for the assistance with the experimental procedure.

Funding

This study was supported by the Ministry of Science and ICT, Republic of Korea (2017R1C1B5018396), the Ministry of Education, Republic of Korea (2019R1I1A3A01059201), the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HR20C0021), American Brain Tumor Association (DG1700010), and the DongKook Life Science. Co., Ltd., Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilwoo Park.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, I., Kim, S., Pucciarelli, D. et al. Differentiating Radiation Necrosis from Brain Tumor Using Hyperpolarized Carbon-13 MR Metabolic Imaging. Mol Imaging Biol 23, 417–426 (2021). https://doi.org/10.1007/s11307-020-01574-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01574-w

Key Words

Navigation