Skip to main content

Advertisement

Log in

PET Imaging of l-Type Amino Acid Transporter (LAT1) and Cystine-Glutamate Antiporter (xc) with [18F]FDOPA and [18F]FSPG in Breast Cancer Models

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The present study describes the analysis of amino acid transporters ASCT1, ASCT2, LAT1, and xc in breast cancer under normoxic and hypoxic conditions. [18F]FDOPA-PET and [18F]FSPG-PET were used as imaging biomarkers to probe l-type amino acid transporter (LAT1) and cystine-glutamate antiporter (xc) in breast cancer models.

Procedures

LAT1 and xc transporters were studied under normoxic and hypoxic conditions with radiotracers [18F]FDOPA and [18F]FSPG in estrogen receptor–positive (ER+) MCF7 and triple-negative MDA-MB231 cells and in human mammary epithelial MCF10A control cells. Protein expression was analyzed using Western blot and immunohistochemistry.

Results

ASCT1 protein expression levels were comparable in all three cell lines, while noticeable ASCT2 expression levels were only found in MCF10A control cells. Higher LAT1 protein expression was detected in ER+ MCF7 cells. High xc protein expression levels were detected in MDA-MB231 cells. Uptake of [18F]FDOPA through LAT1 was significantly higher in MCF7 versus MDA-MB231 cells, while the uptake of [18F]FSPG through xc resulted in the opposite confirming expression and functional differences for both amino acid transporters in different breast cancer models. Hypoxia significantly increased [18F]FDOPA uptake in MCF7 cells and [18F]FSPG uptake in MDA-MB231 cells. In vivo PET imaging revealed substantially higher tumor uptake of [18F]FDOPA in MCF7 tumors as well as [18F]FSPG uptake in MDA-MB231 tumors confirming differences detected in vitro.

Conclusions

ER+ breast cancer cells express higher levels of amino acid transporter LAT1, whereas triple-negative breast cancer cells express more xc. Cellular uptake and PET imaging experiments with [18F]FDOPA and [18F]FSPG confirmed functional LAT1 and xc expression profiles. There was initial evidence that hypoxia regulates the function of both amino acid transporters in breast cancer. The results further indicated that [18F]FDOPA and [18F]FSPG are suitable radiotracer to distinguish between ER+ and triple-negative breast cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. DeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A (2017) Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin 67:439–448

    PubMed  Google Scholar 

  2. Tevaarwerk AJ, Gray RJ, Schneider BP, Smith ML, Wagner LI, Fetting JH, Davidson N, Goldstein LJ, Miller KD, Sparano JA (2013) Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy little evidence of improvement over the past 30 years characteristics of included trials. Cancer 119:1140–1148

    PubMed  Google Scholar 

  3. Bychkovsky BL, Lin NU (2017) Imaging in the evaluation and follow-up of early and advanced breast cancer: when, why, and how often? Breast 31:318–324

    PubMed  Google Scholar 

  4. Groheux D, Cochet A, Humbert O, Alberini JL, Hindie E, Mankoff D (2016) 18F-FDG PET/CT for staging and restaging of breast cancer. J Nucl Med 57(Suppl 1):17S–26S

    CAS  PubMed  Google Scholar 

  5. Shen B, Huang T, Sun Y, Jin Z, Li XF (2017) Revisit 18F-fluorodeoxyglucose oncology positron emission tomography: ‘systems molecular imaging’ of glucose metabolism. Oncotarget 8:43536–43542

    PubMed  PubMed Central  Google Scholar 

  6. Alvarez JV, Belka GK, Pan TC, Chen CC, Blankemeyer E, Alavi A, Karp JS, Chodosh LA (2014) Oncogene pathway activation in mammary tumors dictates FDG-PET uptake. Cancer Res 74:7583–7598

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kubota K, Yamashita H, Mimori A (2017) Clinical value of FDG-PET/CT for the evaluation of rheumatic diseases: rheumatoid arthritis, polymyalgia rheumatica, and relapsing polychondritis. Semin Nucl Med 47:408–424

    PubMed  Google Scholar 

  8. Adejolu M, Huo L, Rohren E, Santiago L, Yang WT (2012) False-positive lesions mimicking breast cancer on FDG PET and PET/CT. AJR Am J Roentgenol 198:W304–W314

    PubMed  Google Scholar 

  9. Lieu EL, Nguyen T, Rhyne S, Kim J (2020) Amino acids in cancer. Exp Mol Med 52:15–30

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith B, Schafer XL, Ambeskovic A, Spencer CM, Land H, Munger J (2016) Addiction to coupling of the Warburg effect with glutamine catabolism in cancer cells. Cell Rep 17:821–836

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cha YJ, Kim ES, Koo JS (2018) Amino acid transporters and glutamine metabolism in breast cancer. Int J Mol Sci 19:E907

    PubMed  Google Scholar 

  12. Semenza GL (2015) The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim Biophys Acta 1863:382–391

    PubMed  PubMed Central  Google Scholar 

  13. Hamann I, Krys D, Glubrecht D, Bouvet V, Marshall A, Vos L, Mackey JR, Wuest M, Wuest F (2018) Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer—effects of hypoxia. FASEB J 32:5104–5118

    CAS  PubMed  Google Scholar 

  14. Elorza A, Soro-Arnáiz I, Meléndez-Rodríguez F, Rodríguez-Vaello V, Marsboom G, de Cárcer G, Acosta-Iborra B, Albacete-Albacete L, Ordóñez A, Serrano-Oviedo L, Giménez-Bachs JM, Vara-Vega A, Salinas A, Sánchez-Prieto R, Martín del Río R, Sánchez-Madrid F, Malumbres M, Landázuri MO, Aragonés J (2012) HIF2α acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol Cell 48:681–691

    CAS  PubMed  Google Scholar 

  15. Barollo S, Bertazza L, Watutantrige-Fernando S, Censi S, Cavedon E, Galuppini F, Pennelli G, Fassina A, Citton M, Rubin B, Pezzani R, Benna C, Opocher G, Iacobone M, Mian C (2016) Overexpression of L-type amino acid transporter 1 (LAT1) and 2 (LAT2): novel markers of neuroendocrine tumors. PLoS One 11:e0156044

    PubMed  PubMed Central  Google Scholar 

  16. Sarikaya I (2015) PET imaging in neurology: Alzheimer’s and Parkinson’s diseases. Nucl Med Commun 36:775–781

    CAS  PubMed  Google Scholar 

  17. Minn H, Kemppainen J, Kauhanen S, Forsback S, Seppänen M (2014) F-Fluorodihydroxyphenylalanine in the diagnosis of neuroendocrine tumors. PET Clin 9:27–36

    PubMed  Google Scholar 

  18. Zhang JS, Li L, Cheng W (2016) Single incision laparoscopic 90 % pancreatectomy for the treatment of persistent hyperinsulinemic hypoglycemia of infancy. Pediatr Surg Int 32:1003–1007

    PubMed  Google Scholar 

  19. Imperiale A, Sebag F, Vix M, Castinetti F, Kessler L, Moreau F, Bachellier P, Guillet B, Namer IJ, Mundler O, Taïeb D (2015) F-FDOPA PET / CT imaging of insulinoma revisited. Eur J Nucl Med Mol Imaging 42:409–418

    CAS  PubMed  Google Scholar 

  20. Koglin N, Mueller A, Berndt M, Schmitt-Willich H, Toschi L, Stephens AW, Gekeler V, Friebe M, Dinkelborg LM (2011) Specific PET imaging of xC- transporter activity using a 18F-labeled glutamate derivative reveals a dominant pathway in tumor metabolism. Clin Cancer Res 17:6000–6011

    CAS  PubMed  Google Scholar 

  21. Beinat C, Gowrishankar G, Shen B, Alam IS, Robinson E, Haywood T, Patel CB, Azevedo EC, Castillo JB, Ilovich O, Koglin N, Schmitt-Willich H, Berndt M, Mueller A, Zerna M, Srinivasan A, Gambhir SS (2019) The characterization of 18F-HGTS13 for molecular imaging of XC2 transporter activity with PET. J Nucl Med 60:1812–1817

    CAS  PubMed  Google Scholar 

  22. Ermert J, Coenen HH (2013) Methods for (11) C- and (18) F-labelling of amino acids and derivatives for positron emission tomography imaging. J Labelled Comp Radiopharm 56:225–236

    CAS  PubMed  Google Scholar 

  23. Coenen HH, Ermert J (2018) 18F-labelling innovations and their potential for clinical application. Clin Transl Imaging 6:169–193

    Google Scholar 

  24. Libert LC, Franci X, Plenevaux AR, Ooi T, Maruoka K, Luxen AJ, Lemaire CF (2013) Production at the Curie level of no-carrier-added 6-18F-fluoro-L-dopa. J Nucl Med 54:1154–1161

    CAS  PubMed  Google Scholar 

  25. Wuest M, Kuchar M, Sharma SK, Richter S, Hamann I, Wang M, Vos L, Mackey JR, Wuest F, Löser R (2015) Targeting lysyl oxidase for molecular imaging in breast cancer. Breast Cancer Res 17:107

    PubMed  PubMed Central  Google Scholar 

  26. Krys D, Hamann I, Wuest M, Wuest F (2019) Effect of hypoxia on human equilibrative nucleoside transporters hENT1 and hENT2 in breast cancer. FASEB J 33:13837–13851

    CAS  PubMed  Google Scholar 

  27. Van Geldermalsen M, Wang Q, Nagarajah R et al (2016) ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35:3201–3208

    PubMed  Google Scholar 

  28. Shennan DB, Thomson J, Gow IF, Travers MT, Barber MC (2004) L-leucine transport in human breast cancer cells (MCF-7 and MDA-MB-231): kinetics, regulation by estrogen and molecular identity of the transporter. Biochim Biophys Acta 1664:206–216

    CAS  PubMed  Google Scholar 

  29. Furuya M, Horiguchi J, Nakajima H, Kanai Y, Oyama T (2012) Correlation of l-type amino acid transporter 1and cd98 expression with triple negative breast cancer prognosis. Cancer Sci 103:382–389

    CAS  PubMed  Google Scholar 

  30. Mihaly Z, Kormos M, Lanczky A et al (2013) A meta-analysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer Res Treat 140:219–232

    CAS  PubMed  Google Scholar 

  31. Santhanam P, Taïeb D (2014) Role of (18)F-FDOPA PET/CT imaging in endocrinology. Clin Endocrinol 81:789–798

    CAS  Google Scholar 

  32. Habermeier A, Graf J, Sandhöfer BF, Boissel JP, Roesch F, Closs EI (2015) System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino Acids 47:335–344

    CAS  PubMed  Google Scholar 

  33. Pauleit D, Stoffels G, Schaden W, Hamacher K, Bauer D, Tellmann L, Herzog H, Bröer S, Coenen HH, Langen KJ (2005) PET with O-(2-18F-fluoroethyl)-L-tyrosine in peripheral tumors: first clinical results. J Nucl Med 46:411–416

    CAS  PubMed  Google Scholar 

  34. Unterrainer M, Galldiks N, Suchorska B, Kowalew LC, Wenter V, Schmid-Tannwald C, Niyazi M, Bartenstein P, Langen KJ, Albert NL (2017) 18F-FET PET uptake characteristics in patients with newly diagnosed and untreated brain metastasis. J Nucl Med 58:584–558

    CAS  PubMed  Google Scholar 

  35. Shennan DB, Thomson J (2008) Inhibition of system L (LAT1/CD98hc) reduces the growth of cultured human breast cancer cells. Oncol Rep 20:885–889

    CAS  PubMed  Google Scholar 

  36. Kim CS, Cho SH, Chun HS, Lee SY, Endou H, Kanai Y, Kim DK (2008) BCH, an inhibitor of system L amino acid transporters, induces apoptosis in cancer cells. Biol Pharm Bull 31:1096–1100

    CAS  PubMed  Google Scholar 

  37. Rosilio C, Nebout M, Imbert V, Griessinger E, Neffati Z, Benadiba J, Hagenbeek T, Spits H, Reverso J, Ambrosetti D, Michiels JF, Bailly-Maitre B, Endou H, Wempe MF, Peyron JF (2015) L-type amino-acid transporter 1 ( LAT1 ): a therapeutic target supporting growth and survival of T-cell lymphoblastic lymphoma / T-cell acute lymphoblastic leukemia. Leukemia 29:1253–1266

    CAS  PubMed  Google Scholar 

  38. Häfliger P, Graff J, Rubin M, Stooss A, Dettmer MS, Altmann KH, Gertsch J, Charles RP (2018) The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. J Exp Clin Cancer Res 37:234

    PubMed  PubMed Central  Google Scholar 

  39. Singh N, Scalise M, Galluccio M et al (2018) Discovery of potent inhibitors for the large neutral amino acid transporter 1 (LAT1) by structure-based methods. Int J Mol Sci 20:E27

    PubMed  Google Scholar 

  40. Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L, Tagde A, Maeda T, Hiraki M, Sukhatme VP, Kufe D (2016) Functional interactions of the cystine/glutamate antiporter, cd44v and muc1-concoprotein in triple-negative breast cancer cells. Oncotarget 7:11756–11769

    PubMed  PubMed Central  Google Scholar 

  41. Yang Y, Yee D (2014) IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule x-C. Cancer Res 74:2295–2305

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Habib E, Linher-Melville K, Lin HX, Singh G (2015) Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Redox Biol 5:33–42

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoehne A, James ML, Alam IS et al (2018) [18F]FSPG-PET reveals increased cystine/glutamate antiporter (xc-) activity in a mouse model of multiple sclerosis. J Neuroinflammation 15:55

    PubMed  PubMed Central  Google Scholar 

  44. Sato R, Nakano T, Hosonaga M et al (2017) RNA sequencing analysis reveals interactions between breast cancer or melanoma cells and the tissue microenvironment during brain metastasis. Biomed Res Int 2017:8032910

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. John Wilson, David Clendening, and Blake Lazurko from the Edmonton Radiopharmaceutical Center for 18F production as well as [18F]FDOPA production. The authors are also grateful to Dan McGinn (Vivarium of the Cross Cancer Institute, Edmonton, AB, Canada) for supporting the animal work and Dr. Hans-Soenke Jans (University of Alberta) for technical help and support of the PET imaging experiments. D.K. thanks the Alberta Cancer Foundation for a Graduate Student Scholarship and the Cancer Research Institute of Northern Alberta (CRINA) for la Vie en Rose Scholarship for Breast Cancer Research. The authors also gratefully acknowledge the Dianne and Irving Kipnes Foundation for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wuest.

Ethics declarations

All animal experiments were carried out in accordance with guidelines of the Canadian Council on Animal Care (CCAC) and approved by the local animal care committee of the Cross Cancer Institute.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krys, D., Mattingly, S., Glubrecht, D. et al. PET Imaging of l-Type Amino Acid Transporter (LAT1) and Cystine-Glutamate Antiporter (xc) with [18F]FDOPA and [18F]FSPG in Breast Cancer Models. Mol Imaging Biol 22, 1562–1571 (2020). https://doi.org/10.1007/s11307-020-01529-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01529-1

Key words

Navigation