Skip to main content
Log in

Volumetric Optoacoustic Tomography Differentiates Myocardial Remodelling

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Myocardial healing following myocardial infarction (MI) is a complex process that is yet to be fully understood. Clinical attempts in regeneration of the injured myocardium using cardiac stem cells faced major challenges, calling for a better understanding of the processes involved at a more basic level in order to foster translation.

Procedures

We examined the feasibility of volumetric optoacoustic tomography (VOT) in studying healing of the myocardium in different models of MI, including permanent occlusion (PO) of the left coronary artery, temporary occlusion (ischemia-reperfusion—I/R) and infarcted c-kit mutants, a genetic mouse model with impaired cardiac healing. Murine hearts were imaged at 100 Hz frame rate using 800 nm excitation wavelength, corresponding to the peak absorption of indocyanine green (ICG) in plasma and the isosbestic point of haemoglobin.

Results

The non-invasive real-time volumetric imaging capabilities of VOT have allowed the detection of significant variations in the pulmonary transit time (PTT), a parameter affected by MI, across different murine models. Upon intravenous injection of ICG, we were able to track alterations in cardiac perfusion in I/R models, which were absent in wild-type (wt) PO or kitW/kitW-v PO mice. The wt-PO and I/R models further exhibited irregularities in their cardiac cycles.

Conclusions

Clear differences in the PTT, ICG perfusion and cardiac cycle patterns were identified between the different models and days post MI. Overall, the results highlight the unique capacity of VOT for multi-parametric characterization of morphological and functional changes in murine models of MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tanai E, Frantz S (2011) Pathophysiology of heart failure. Compr Physiol 6(1):187–214

    Google Scholar 

  2. Sutton MGSJ, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25):2981–2988

    Article  CAS  PubMed  Google Scholar 

  3. Kikuchi K, Poss KD (2012) Cardiac regenerative capacity and mechanisms. Annual Rev Cell Dev Biol 28:719–741

    Article  CAS  Google Scholar 

  4. Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana, Nurzynska D, Torella D, Rotatori F, Rastaldo R, Musso E, Quaini F, Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97(7):663–673

    Article  CAS  PubMed  Google Scholar 

  5. Bergmann O, Bhardwaj RD, Bernanrd S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Burchholz BA, Duird H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Madigan M, Atoui R (2018) Therapeutic use of stem cells for myocardial infarction. Bioengineering 5(2):28

    Article  PubMed Central  Google Scholar 

  7. Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ (2014) Cell therapy for cardiac repair—lessons from clinical trials. Nat Rev Cardiol 11(4):232–246

    Article  PubMed  Google Scholar 

  8. Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F, Hare JM (2018) Preclinical studies of stem cell therapy for heart disease. Circ Res 122(7):1006–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu X, Qian C, Chen DY, Dodd SJ, Koretsky AP (2014) Deciphering laminar-specific neural inputs with line-scanning fMRI. Nat Methods 11(1):55–58

    Article  PubMed  Google Scholar 

  10. Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M (2018) Guidelines for measuring cardiac physiology in mice. Am J Physiol-Heart C 314(4):H733–H752

    Article  Google Scholar 

  11. Provost J, Papadacci C, Arango JE, Imbault M, Fink M, Gennisson JL, Tanter M, Pernot M (2014) 3D ultrafast ultrasound imaging in vivo. Phys Med Biol 59(19):L1–L13

    Article  PubMed  PubMed Central  Google Scholar 

  12. Damen FW, Berman AG, Soepriatna AH, Ellis JM, Buttars SD, Aasa KL, Goergen CJ (2017) High-frequency 4-dimensional ultrasound (4DUS): a reliable method for assessing murine cardiac function. Tomography 3(4):180–187

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deán-Ben XL, Ford SJ, Razansky D (2015) High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion. Sci Rep 5:10133

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lin H-CA, Dean-Ben XL, Ivankovic I, Kimm MA, Kosanke K, Haas H, Meier R, Lohofer F, Wildgruber M, Razansky D (2017) Characterization of cardiac dynamics in an acute myocardial infarction model by four-dimensional optoacoustic and magnetic resonance imaging. Theranostics 7(18):4470–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ivankovic I, Deán-Ben XL, Lin HCA, Zhang Z, Trautz B, Petry A, Gorlach A, Razansky D (2019) Volumetric optoacoustic tomography enables non-invasive in vivo characterization of impaired heart function in hypoxic conditions. Sci Rep 9(1):8369

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, Torella M, Paolino D, Mollace V, Nadal-Ginard B, Torella D (2019) Role of c-kit in myocardial regeneration and aging. Front Endocrinol 10

  17. Wildgruber M, Bielicki I, Aichler M, Kosanke K, Feuchtinger A, Settles M, Onthank DC, Cesati RR, Robinson SP, Huber AM, Rummeny EJ, Walch AK, Botnar RM (2014) Assessment of myocardial infarction and postinfarction scar remodeling with an elastin-specific magnetic resonance agent. Circ. Cardiovasc Imaging 7(2):321–329

    Article  PubMed  Google Scholar 

  18. Di Siena S, Gimmelli R, Nori SL, Barbagallo F, Campolo F, Dolci S, Feigenbaum L, Lenzi A, Naro F, Cianflone E, Mancuso T, Torella D, Isidori AM, Pellegrini M (2016) Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis 7(7):e2317

  19. Deán-Ben XL, Ozbek A, Razansky D (2013) Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Trans Med Imaging 32(11):2050–2055

    Article  PubMed  Google Scholar 

  20. Muthuramu I, Lox M, Jacobs F, De Geest B (2014) Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure. Jove-J Vis Exp 94

  21. Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frandogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol-Heart C 314(4):H812–H838

  22. Ganame J, Messalli G, Dymarkowski S, Rademakers FE, Desmet W, Van de Werf F, Bogaert J (2009) Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J 30(12):1440–1449

    Article  PubMed  Google Scholar 

  23. Hsieh PC et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8):970–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Granger DN, Kvietys PR (2017) Reperfusion therapy—What’s with the obstructed, leaky and broken capillaries? Pathophysiology 24(4):213–228

  25. Vandoorne K, Addadi Y, Neeman M (2010) Visualizing vascular permeability and lymphatic drainage using labeled serum albumin. Angiogenesis 13(2):75–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, Venermo M, Välisuo PA (2012) review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 940585

  27. Sonin D, Papayan G, Pochkaeva E, Chefu S, Minasian S, Kurapeev D, Vaage J, Petrishchev N, Galagudza M (2017) In vivo visualization and ex vivo quantification of experimental myocardial infarction by indocyanine green fluorescence imaging. Biomed Opt Express 8(1):151–161

    Article  CAS  PubMed  Google Scholar 

  28. Zimetbaum PJ, Josephson ME (2003) Use of the electrocardiogram in acute myocardial infarction. New Engl J Med 348(10):933–940

    Article  PubMed  Google Scholar 

  29. Cohen M, Boiangiu C, Abidi M (2010) Therapy for ST-segment elevation myocardial infarction patients who present late or are ineligible for reperfusion therapy. J Am Coll of Cardiol 55(18):1895–1906

    Article  Google Scholar 

  30. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD (2012) Third universal definition of myocardial infarction. Circulation 126(16):2020–2035

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Razansky.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(AVI 57134 kb)

ESM 2

(AVI 65361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivankovic, I., Déan-Ben, X.L., Haas, H. et al. Volumetric Optoacoustic Tomography Differentiates Myocardial Remodelling. Mol Imaging Biol 22, 1235–1243 (2020). https://doi.org/10.1007/s11307-020-01498-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01498-5

Key words

Navigation