Skip to main content

Advertisement

Log in

Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Considerable progress has been made in the assessment and management of non-small cell lung cancer (NSCLC) patients based on mutation status in the epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS). At the same time, NSCLC management through KRAS and EGFR mutation profiling faces challenges. In the present work, we aimed to evaluate a comprehensive radiomics framework that enabled prediction of EGFR and KRAS mutation status in NSCLC patients based on radiomic features from low-dose computed tomography (CT), contrast-enhanced diagnostic quality CT (CTD), and positron emission tomography (PET) imaging modalities and use of machine learning algorithms.

Methods

Our study involved NSCLC patients including 150 PET, low-dose CT, and CTD images. Radiomic features from original and preprocessed (including 64 bin discretizing, Laplacian-of-Gaussian (LOG), and Wavelet) images were extracted. Conventional clinically used standard uptake value (SUV) parameters and metabolic tumor volume (MTV) were also obtained from PET images. Highly correlated features were pre-eliminated, and false discovery rate (FDR) correction was performed with the resulting q-values reported for univariate analysis. Six feature selection methods and 12 classifiers were then used for multivariate prediction of gene mutation status (provided by polymerase chain reaction (PCR)) in patients. We performed 10-fold cross-validation for model tuning to improve robustness, and our developed models were assessed on an independent validation set with 68 patients (common in all three imaging modalities). The average area under the receiver operator characteristic curve (AUC) was utilized for performance evaluation.

Results

The best predictive power for conventional PET parameters was achieved by SUVpeak (AUC 0.69, p value = 0.0002) and MTV (AUC 0.55, p value = 0.0011) for EGFR and KRAS, respectively. Univariate analysis of extracted radiomics features improved AUC performance to 0.75 (q-value 0.003, Short-Run Emphasis feature of GLRLM from LOG preprocessed image of PET with sigma value 1.5) and 0.71 (q-value 0.00005, Large Dependence Low Gray-Level Emphasis feature of GLDM in LOG preprocessed image of CTD with sigma value 5) for EGFR and KRAS, respectively. Furthermore, multivariate machine learning-based AUC performances were significantly improved to 0.82 for EGFR (LOG preprocessed image of PET with sigma 3 with variance threshold (VT) feature selector and stochastic gradient descent (SGD) classifier (q-value = 4.86E-05) and 0.83 for KRAS (LOG preprocessed image of CT with sigma 3.5 with select model (SM) feature selector and SGD classifier (q-value = 2.81E−09).

Conclusion

Our work demonstrated that non-invasive and reliable radiomics analysis can be successfully used to predict EGFR and KRAS mutation status in NSCLC patients. We demonstrated that radiomic features extracted from different image-feature sets could be used for EGFR and KRAS mutation status prediction in NSCLC patients and showed improved predictive power relative to conventional image-derived metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Roberts PJ, Stinchcombe TE, Der CJ, Socinski MA (2010) Personalized medicine in non–small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor–targeted therapy? J Clin Oncol 28:4769–4777

    CAS  PubMed  Google Scholar 

  2. Ludovini V, Bianconi F, Pistola L, Chiari R, Minotti V, Colella R, Giuffrida D, Tofanetti FR, Siggillino A, Flacco A, Baldelli E, Iacono D, Mameli MG, Cavaliere A, Crinò L (2011) Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J Thorac Oncol 6:707–715

    PubMed  Google Scholar 

  3. Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9:962–972

    CAS  PubMed  Google Scholar 

  4. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Jänne PA, Januario T, Johnson DH, Klein P, Miller VA, Ostland MA, Ramies DA, Sebisanovic D, Stinson JA, Zhang YR, Seshagiri S, Hillan KJ (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non–small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23:5900–5909

    CAS  PubMed  Google Scholar 

  5. Riely GJ, Marks J, Pao W (2009) KRAS mutations in non–small cell lung cancer. Ann Am Thorac Soc 6:201–205

    CAS  Google Scholar 

  6. Mak R, Hermann G, Aerts H et al (2016) Outcomes by EGFR, KRAS and ALK genotype after combined modality therapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 96:S156

    Google Scholar 

  7. Sun X, Xiao Z, Chen G et al (2018) A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl Med 10:eaan8840

    PubMed  Google Scholar 

  8. Thawani R, McLane M, Beig N et al (2017) Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115:34–41

    PubMed  Google Scholar 

  9. Incoronato M, Aiello M, Infante T et al (2017) Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci 18:805

    PubMed Central  Google Scholar 

  10. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout R, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    PubMed  PubMed Central  Google Scholar 

  11. Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    PubMed  Google Scholar 

  12. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present … any future? Eur J Nucl Med Mol Imaging 44:151–165

    PubMed  Google Scholar 

  13. Zinn PO, Majadan B, Sathyan P et al (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 6:e25451

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kang J, Rancati T, Lee S et al (2018) Machine learning and radiogenomics: lessons learned and future directions. Front Oncol 8:228

    PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Kim J, Balagurunathan Y et al (2016) Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. Clin Lung Cancer 17:441–448.e446

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin YC, Lin G, Hong JH, Lin YP, Chen FH, Ng SH, Wang CC (2017) Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology. J Magn Reson Imaging 46:483–489

    PubMed  Google Scholar 

  17. Velazquez ER, Parmar C, Liu Y et al (2017) Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 77:3922–3930

    PubMed Central  Google Scholar 

  18. Zhang L, Chen B, Liu X et al (2018) Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer. Transl Oncol 11:94–101

    PubMed  Google Scholar 

  19. Wang S, Shi J, Ye Z et al (2019) Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J 53:1800986

    PubMed  PubMed Central  Google Scholar 

  20. Zhao W, Yang J, Ni B et al (2019) Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning. In: Cancer medicine

    Google Scholar 

  21. Li X, Yin G, Zhang Y, et al. (2019) Predictive power of a radiomic signature based on 18F-FDG PET/CT images for EGFR mutational status in NSCLC. Frontiers in Oncology 9

  22. Pinheiro G, Pereira T, Dias C, et al. (2019) Identifying relationships between imaging phenotypes and lung cancer-related mutation status: EGFR and KRAS. bioRxiv:794123

  23. Lambin P, Leijenaar RT, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

    PubMed  Google Scholar 

  24. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJ (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol 5:272

    PubMed  PubMed Central  Google Scholar 

  26. Leger S, Zwanenburg A, Pilz K et al (2017) A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep 7:13206

    PubMed  PubMed Central  Google Scholar 

  27. Deist TM, Dankers FJ, Valdes G et al (2018) Machine learning algorithms for outcome prediction in (chemo) radiotherapy: an empirical comparison of classifiers. Med Phys

  28. Hajianfar G, Shiri I, Maleki H, Oveisi N, Haghparast A, Abdollahi H, Oveisi M (2019) Noninvasive O6 methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. World Neurosurg 132:e140–e161

    PubMed  Google Scholar 

  29. Prior FW, Clark K, Commean P, et al. (2013) TCIA: an information resource to enable open science [abstract]. 1282-1285P

  30. Gevaert O, Xu J, Hoang CD et al (2012) Non–small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data—methods and preliminary results. Radiology 264:387–396

    PubMed  PubMed Central  Google Scholar 

  31. Clark K, Vendt B, Smith K et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057

    PubMed  PubMed Central  Google Scholar 

  32. Bakr S, Gevaert O, Echegaray S et al (2018) A radiogenomic dataset of non-small cell lung cancer. Sci Data 5:180202

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Asano H, Toyooka S, Tokumo M, Ichimura K, Aoe K, Ito S, Tsukuda K, Ouchida M, Aoe M, Katayama H, Hiraki A, Sugi K, Kiura K, Date H, Shimizu N (2006) Detection of EGFR gene mutation in lung cancer by mutant-enriched polymerase chain reaction assay. Clin Cancer Res 12:43–48

    CAS  PubMed  Google Scholar 

  34. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K (2012) Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 22:796–802

    PubMed  Google Scholar 

  35. Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216

    PubMed  PubMed Central  Google Scholar 

  36. Pieper S, Halle M, Kikinis R (2004) 3D slicer [abstract]. 632-635P

  37. Van Griethuysen JJ, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107

    PubMed  PubMed Central  Google Scholar 

  38. Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative. arXiv preprint arXiv:161207003

  39. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  40. Simon R, Roychowdhury S (2013) Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov 12:358

    CAS  PubMed  Google Scholar 

  41. Wu J, Tha KK, Xing L, Li R (2018) Radiomics and radiogenomics for precision radiotherapy. J Radiat Res 59:i25–i31

    PubMed  PubMed Central  Google Scholar 

  42. Shiri I, Maleki H, Hajianfar G, et al. (2018) PET/CT Radiomic sequencer for prediction of EGFR and KRAS mutation status in NSCLC patients [abstract]. 1-4P

  43. Zhang B, He X, Ouyang F et al (2017) Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 403:21–27

    CAS  PubMed  Google Scholar 

  44. Abdollahi H, Mofid B, Shiri I et al (2019) Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. La radiologia medica 124:555–567

    PubMed  Google Scholar 

  45. Du D, Feng H, Lv W et al (2019) Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation: application to nasopharyngeal carcinoma post-therapy PET/CT images. Molecular imaging and biology:1–9

  46. Tu W, Sun G, Fan L, Wang Y, Xia Y, Guan Y, Li Q, Zhang D, Liu S, Li Z (2019) Radiomics signature: a potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Lung Cancer 132:28–35

    PubMed  Google Scholar 

  47. Rizzo S, Raimondi S, de Jong EE, van Elmpt W, de Piano F, Petrella F, Bagnardi V, Jochems A, Bellomi M, Dingemans AM, Lambin P (2019) Genomics of non-small cell lung cancer (NSCLC): association between CT-based imaging features and EGFR and K-RAS mutations in 122 patients—an external validation. Eur J Radiol 110:148–155

    PubMed  Google Scholar 

  48. Reuzé S, Schernberg A, Orlhac F et al (2018) Radiomics in nuclear medicine applied to radiation therapy: methods, pitfalls and challenges. Int J Radiat Oncol Biol Phys

  49. Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2:1636–1642

    PubMed  Google Scholar 

  50. Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG, Hricak H, Sutton EJ, Morris EA (2018) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 47:604–620

    PubMed  Google Scholar 

  51. Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt W, Parmar C, Hoekstra OS, Hoekstra CJ, Boellaard R, Dekker AL, Gillies RJ, Aerts HJ, Lambin P (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397

    CAS  PubMed  Google Scholar 

  52. Abdollahi H, Shiri I, Heydari M (2019) Medical imaging technologists in radiomics era: an Alice in wonderland problem. Iran J Public Health 48:184

    PubMed  PubMed Central  Google Scholar 

  53. Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27:4498–4509

    PubMed  Google Scholar 

  54. Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A, Chen W (2016) Robustness of radiomic features in [11 C] choline and [18 F] FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol 18:935–945

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by “Rajaie Cardiovascular Medical and Research Centre” and the Swiss National Science Foundation under Grant SNSF 320030_176052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Rahmim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

For this type of study formal consent is not required.

Informed Consent

For this type of study formal consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 46080 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiri, I., Maleki, H., Hajianfar, G. et al. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Mol Imaging Biol 22, 1132–1148 (2020). https://doi.org/10.1007/s11307-020-01487-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01487-8

Key words

Navigation