Skip to main content
Log in

Evaluation of the Neuroprotective Effect of Microglial Depletion by CSF-1R Inhibition in a Parkinson’s Animal Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Neuroinflammation in Parkinson’s disease (PD) is known to play a pivotal role in progression to neuronal degeneration. It has been reported that colony-stimulation factor 1 receptor (CSF-1R) inhibition can effectively deplete microglia. However, its therapeutic efficacy in PD is unclear still now.

Procedures

To elucidate this issue, we examined the contribution of microglial depletion to PD by behavioral testing, positron emission tomography (PET) imaging, and immunoassays in sham, PD, and microglial depletion PD model (PLX3397 was administered to PD groups, with n = 6 in each group).

Results

The microglial depletion in PD model showed improved sensory motor function and depressive-like behavior. NeuroPET revealed that PLX3397 treatment resulted in partial recovery of striatal neuro-inflammatory functions (binding values of [18F]DPA-174 for PD, 1.47 ± 0.12, p < 0.01 vs. for PLX3397 in PD: 1.33 ± 0.26) and the dopaminergic (binding values of 18F-FP-CIT for PD, 1.32 ± 0.07 vs. for PLX3397 in PD: 1.54 ± 0.10, p < 0.01) and glutamatergic systems (binding values of [18F]FPEB for PD: 9.22 ± 0.54 vs. for PLX3397 Tx in PD: 9.83 ± 0.96, p > 0.05). Western blotting for microglia showed similar changes.

Conclusion

Microglial depletion has inflammation-related therapeutic effects, which have beneficial effects on motor and nonmotor symptoms of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  CAS  PubMed  Google Scholar 

  2. Dorsey ER, Elbaz A, Nichols E et al (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol 17:939–953

    Article  Google Scholar 

  3. Dorsey ER, Constantinescu R, Thompson JP et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    Article  CAS  PubMed  Google Scholar 

  4. Svenningsson P, Westman E, Ballard C et al (2012) Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. Lancet Neurol 11:697–707

    Article  PubMed  Google Scholar 

  5. Çolak ÖF, Öztürkler H (2010) Clinical progression in Parkinson’s disease and the neurobiology of axons. Ann Neurol 67:715–725

    Article  Google Scholar 

  6. Kettenmann H, Hanisch U, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  7. Block ML, Zecca L, Hong J (2007) Microglia-mediated neurotoxicity : uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  8. Cartier N, Ann C, Regan L et al (2014) The role of microglia in human disease: therapeutic tool or target ? Acta Neuropathol 128:363–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hillmer AT, Holden D, Fowles K et al (2017) Microglial depletion and activation: a 11C-PBR28 PET study in nonhuman primates. EJNMMI Res 7:1–5

    Article  CAS  Google Scholar 

  10. Kabba J, Xu Y, Christian H et al (2017) Microglia: housekeeper of the central nervous system. Cell Mol Neurobiol 38:53–71

    Article  PubMed  CAS  Google Scholar 

  11. Qian L, Flood P (2008) Microglial cells and Parkinson’s disease. Immunol Res 41:155–164

    Article  CAS  PubMed  Google Scholar 

  12. Moehle M, West AB (2015) M1 and M2 immune activation in Parkinson’s disease: foe and ally? Neuroscience 302:59–73

    Article  CAS  PubMed  Google Scholar 

  13. Erblich B, Zhu L, Etgen AM et al (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6:1–13

    Article  CAS  Google Scholar 

  14. Sawada M (1990) Activation and proliferation of the isolated microglia by colony stimulating factor-1 and possible involvement of protein kinase C. Brain Res 509:119–124

    Article  CAS  PubMed  Google Scholar 

  15. Sherr CJ, Rettenmier CW, Sacca R (1985) The C-Fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676

    Article  CAS  PubMed  Google Scholar 

  16. Gomez-Nicola D, Fransen NL, Suzzi S et al (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spangenberg EE, Lee RJ, Najafi ARet al. (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139:1265–1281

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elmore MRP, Lee RJ, West BL et al (2015) Characterizing newly repopulated microglia in the adult mouse : impacts on animal behavior, cell morphology, and neuroinflammation. PLoS One 10:1–18

    Google Scholar 

  19. Herrero MT, Estrada C, Maatouk L et al (2015) Inflammation in Parkinson’s disease: role of glucocorticoids. Front Neuroanat 9:1–12

    Article  CAS  Google Scholar 

  20. Gordon R, Albornoz EA, Christie DC et al (2018) Inflammasome inhibition prevents α-synuclein pathology and dopaminergic Neurodegeneration in mice. Sci Transl Med 10:1–12

    Article  CAS  Google Scholar 

  21. Gelhorn HL, Tong S, McQuarrie K et al (2016) Patient-reported symptoms of tenosynovial giant cell tumors. Clin Ther 38:778–793

    Article  PubMed  PubMed Central  Google Scholar 

  22. Renee M, Elmore P, Najafi AR et al (2014) CSF1 receptor signaling is necessary for microglia viability, which unmasks a cell that rapidly repopulates the microglia-depleted adult brain. Neuron 82:380–397

    Article  CAS  Google Scholar 

  23. Thompson ML, Jimenez-Andrade JM, Chartier S, Tsai J, Burton EA, Habets G, Lin PS, West BL, Mantyh PW (2015) Targeting cells of the myeloid lineage attenuates pain and disease progression in a prostate model of bone cancer. Pain 156:1692–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maia S, Arlicot N, Vierron E, Bodard S, Vergote J, Guilloteau D, Chalon S (2012) Longitudinal and parallel monitoring of neuroinflammation and neurodegeneration in a 6-hydroxydopamine rat model of Parkinson’s disease. Synapse 66:573–583

    Article  CAS  PubMed  Google Scholar 

  25. Divoux D, Bernaudin M, Bouet V et al (2009) The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4:1560–1564

    Article  PubMed  CAS  Google Scholar 

  26. Freret T, Bouet V, Leconte C et al (2009) Behavioral deficits after distal focal cerebral ischemia in mice: usefulness of adhesive removal test. Behav Neurosci 123:224–230

    Article  PubMed  Google Scholar 

  27. Schallert T, Fleming SM, Leasure JL et al (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  28. Fleming SM, Ekhator OR, Ghisays V (2013) Assessment of sensorimotor function in mouse models of Parkinson’s disease. Jove 76:1–7

    Google Scholar 

  29. Fleming SM, Salcedo J, Fernagut P et al (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. J Neurosci 24:9434–9440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schallert T, Upchurch M, Lobaugh N et al (1982) Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 16:455–462

    Article  CAS  PubMed  Google Scholar 

  31. Porsolt RD, Anton G, Blavet N et al (1978) Behavioral despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  CAS  PubMed  Google Scholar 

  32. Slattery DA, Cryan JF (2012) Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 7:1009–1014

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Oh S, Chi D et al (2007) One-step high-radiochemical-yield synthesis of 18F-FP-CIT using a protic solvent system. Nucl Med Biol 34:345–351

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Yue X, Kiesewetter DO, Niu G, Teng G, Chen X (2014) PET imaging of Neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. Eur J Nucl Med Mol Imaging 41:1440–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee M, Lee H, Park I et al (2018) Aβ pathology downregulates brain mGluR5 density in a mouse model of Alzheimer. Neuropharmacology 133:1–6

    Article  CAS  Google Scholar 

  36. Oh S, Kim M, Han S et al (2017) Preliminary PET study of 18F-FC119S in normal and Alzheimer’s disease models. Mol Pharm 14:311–3120

    Google Scholar 

  37. Logan J, Fowler JS, Volkow D et al (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. JCBFM:834–840

  38. Hatano K, Sekimata K, Yamada T et al (2015) Radiosynthesis and in vivo evaluation of two as a PET tracer for 18 kDa translocator protein: direct comparison with [11C](R)-PK11195. Ann Nucl Med 29:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elmenhorst D, Minuzzi L, Aliaga A, Rowley J, Massarweh G, Diksic M, Bauer A, Rosa-Neto P (2010) In vivo and in vitro validation of reference tissue models for the mGluR5 ligand [11C]ABP688. J Cereb Blood Flow Metab 30:1538–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boja JW, Mitchell WM, Patel A et al (1992) High-affinity binding of [125I]RTI-55 to dopamine and serotonin transporters in rat brain. Synapse 12:27–36

    Article  CAS  PubMed  Google Scholar 

  41. Abes T, Sugiharas H, Shigemotoy R et al (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368

    Article  Google Scholar 

  42. Fahn S (2015) The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord 30:4–18

    Article  CAS  PubMed  Google Scholar 

  43. Hess CW, Okun MS, Continuum F (2016) Diagnosing Parkinson disease treating the motor symptoms of Parkinson disease. Am Acad Neurol 22:1064–1085

    Google Scholar 

  44. Jellinger KA (2015) Neurobiology of non-motor symptoms in Parkinson disease. J Neural Transm 122:1429–1440

    Article  CAS  PubMed  Google Scholar 

  45. Sauerbier A, Cova I, Rosa-Grilo M, Taddei RN, Mischley LK, Chaudhuri KR (2017) Treatment of nonmotor symptoms in Parkinson’s disease. Int Rev Neurobiol 132:361–379

    Article  PubMed  CAS  Google Scholar 

  46. Meador-woodruff JH, Healy DJ et al (2000) Glutamate receptor expression in schizophrenic brain. Brain Res Rev 31:288–294

    Article  CAS  PubMed  Google Scholar 

  47. Vanle B (2018) NMDA antagonists for treating the non-motor symptoms in Parkinson’s disease. Transl Psychiatry 8:1–16

    Article  CAS  Google Scholar 

  48. Noham W, Jiaxiang Z, Cristina N et al (2018) Sensory attenuation in Parkinson’s disease is related to disease severity and dopamine dose. Sci Rep 8:1–10

    Google Scholar 

  49. Anna F (2017) Management of depression in Parkinson’s disease. Am J Psychiatry 11:8–11

    Google Scholar 

  50. Petros S, Eleni B, Georgia S et al (2010) Efficacy and acceptability of selective serotonin reuptake inhibitors for the treatment of depression in Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. BMC Neurol 10:1–11

    Article  Google Scholar 

  51. Choi C, Sohn YH, Lee JH et al (2000) The effect of long-term levodopa therapy on depression level in de novo patients with Parkinson’s disease. J Neurol Sci 172:12–16

    Article  CAS  PubMed  Google Scholar 

  52. Can A, Dao DT, Arad M et al (2012) The mouse forced swim test. Jove. 59:1–5

    Google Scholar 

  53. Ahmed MR, Shaikh MA, Baloch NA et al (2018) Neuroprotective potential of polydatin against motor abnormalities and dopaminergic neuronal loss in rotenone induced Parkinson model. Int J Morphol 36:584–591

    Article  Google Scholar 

  54. Mathew SJ, Keegan K, Smith L (2005) Glutamate modulators as novel interventions for mood disorders. Rev Bras Psiquiatr 27:243–248

    Article  PubMed  Google Scholar 

  55. Kravitz AV, Kreitzer AC (2014) Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology. 27:1201–1210

    Google Scholar 

  56. Rodriguez-Oroz C, Rodríguez M, Olanow CW et al (2010) The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol 64:S30–S46

    Google Scholar 

  57. Aono H, Choudhury ME, Higaki H, Miyanishi K, Kigami Y, Fujita K, Akiyama JI, Takahashi H, Yano H, Kubo M, Nishikawa N, Nomoto M, Tanaka J (2017) Microglia may compensate for dopaminergic neuron loss in experimental parkinsonism through selective elimination of glutamatergic synapses from the subthalamic nucleus. Glia 65:1833–1847

    Article  PubMed  Google Scholar 

  58. Battaglia G, Busceti CL, Molinaro G et al (2004) Endogenous activation of MGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci 24:828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morin N, Jourdain VA, Morissette M, Grégoire L, di Paolo T (2014) Long-term treatment with L-DOPA and an mGlu5 receptor antagonist prevents changes in brain basal ganglia dopamine receptors, their associated signaling proteins and neuropeptides in Parkinsonian monkeys. Neuropharmacology 79:688–706

    Article  CAS  PubMed  Google Scholar 

  60. Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185:1–10

    Article  CAS  PubMed  Google Scholar 

  61. Popik P, Paul I, Skolnick P (2008) Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 29:23–26

    Google Scholar 

  62. Berman RM, Cappiello A, Anand A et al (1999) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  Google Scholar 

  63. Ronald S, Li N, Liu R-J et al (2013) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35–41

    Google Scholar 

  64. Autry AE, Adachi M, Nosyreva E et al (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bita M, Barbara A, Anita V (1997) Activation of Glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    Article  Google Scholar 

  66. Jenkins BG, Zhu A, Poutiainen P et al (2017) Functional modulation of G-protein coupled receptors during Parkinson disease-like neurodegeneration bruce. Neuropharmacology 108:462–473

    Article  CAS  Google Scholar 

  67. Ouattara B, Gasparini F, Morissette M, Grégoire L, Samadi P, Gomez-Mancilla B, di Paolo T (2010) Effect of L-Dopa on metabotropic glutamate receptor 5 in the brain of Parkinsonian monkeys. J Neurochem 113:715–724

    Article  CAS  PubMed  Google Scholar 

  68. Morissette M, Ouattara B, Hornykiewicz O et al (2011) Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol Aging 32:1286–1295

    Article  PubMed  CAS  Google Scholar 

  69. Samadi P, Grégoire L, Morissette M et al (2008) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29:1040–1051

    Article  CAS  PubMed  Google Scholar 

  70. Crabbé M, Van der Perren A, Weerasekera A et al (2018) Altered MGluR5 binding potential and glutamine concentration in the 6-OHDA rat model of acute Parkinson’s disease and levodopa-induced dyskinesia. Neurobiol Aging 61:82–92

    Article  PubMed  CAS  Google Scholar 

  71. Voermans NC, Petersson KM, Daudey L, Weber B, van Spaendonck K, Kremer HP, Fernández G (2004) Interaction between the human Hippocampus and the caudate nucleus during route recognition. Neuron 43:427–435

    Article  CAS  PubMed  Google Scholar 

  72. Mcdonald RJ, White NM (1995) Hippocampal and nonhippocampal contributions to place learning in rats. Behav Neurosci 109:579–593

    Article  CAS  PubMed  Google Scholar 

  73. Chao Y, Wong SC, Tan EK (2014) Evidence of inflammatory system involvement in Parkinson’s disease. Biomed Res Int 2014:1–9

    CAS  Google Scholar 

  74. Gomez-Nicola D, Perry VH (2014) Microglial dynamics and role in the healthy and diseased brain. Neurosci 21:169–184

    Google Scholar 

  75. Dagher NN, Najafi AR, Kayala KMN et al (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:1–14

    Article  CAS  Google Scholar 

  76. Wieghofer P, Knobeloch KP, Prinz M (2015) Genetic targeting of microglia. Glia 63:1–22

    Article  PubMed  Google Scholar 

  77. Beckmann N, Giorgetti E, Neuhaus A et al (2018) Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945. Acta Neuropathol Commun 6:1–17

    Article  CAS  Google Scholar 

  78. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399

    Article  CAS  PubMed  Google Scholar 

  79. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Irvine KM, Su S, Wilks AF et al (2006) A CSF-1 receptor kinase inhibitor targets effector functions and inhibits pro-inflammatory cytokine production from murine macrophage populations. FASEB J 20:1921–1923

    Article  CAS  PubMed  Google Scholar 

  81. Lee S, Shi XQ, Fan A et al (2018) Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain. Mol Pain 14:1–12

    Google Scholar 

  82. Qu W, Johnson A, Kim JH et al (2017) Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice. J Neuroinflammation 14:1–11

    Article  CAS  Google Scholar 

  83. Li M, Li Z, Ren H et al (2017) Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after Intracerebral hemorrhage. JCBFM 37:2383–2395

    CAS  Google Scholar 

  84. Pascual O, Ben AS, Rostaing P et al (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci 109:E197–E205

    Article  CAS  PubMed  Google Scholar 

  85. Yang X, Ren H, Wood K et al (2018) Depletion of microglia augments the dopaminergic neurotoxicity of MPTP. FASEB J 32:3336–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by the Ministry of Science and ICT (MSIT), Republic of Korea (50536-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Yong Choi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S.J., Ahn, H., Jung, KH. et al. Evaluation of the Neuroprotective Effect of Microglial Depletion by CSF-1R Inhibition in a Parkinson’s Animal Model. Mol Imaging Biol 22, 1031–1042 (2020). https://doi.org/10.1007/s11307-020-01485-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01485-w

Key words

Navigation