Skip to main content

Advertisement

Log in

Integrin α6-Targeted Magnetic Resonance Imaging of Hepatocellular Carcinoma in Mice

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Magnetic resonance imaging (MRI) has a high spatial resolution for detecting hepatocellular carcinoma (HCC). Integrin α6 has emerged as a diagnostic and prognostic biomarker of HCC. Here, we developed the MR contrast agent RWY-dL-(Gd-DOTA)4 based on the integrin α6-targeted RWY peptide that we previously identified to detect HCC.

Procedures

Contrast-enhanced MRI was carried out to evaluate the use of RWY-dL-(Gd-DOTA)4 to detect HCC lesions in subcutaneous and diethylnitrosamine (DEN)-induced HCC mouse models.

Results

Enhancement MR signals were observed in HCC-LM3 subcutaneous liver tumors in the first 5 min post-injection of RWY-dL-(Gd-DOTA)4 at a low dose of 0.03 mmol Gd/kg. Moreover, RWY-dL-(Gd-DOTA)4 generated superior contrast enhancement for liver tumors in chemical-induced HCC mice. Importantly, RWY-dL-(Gd-DOTA)4 provided complementary enhancement MR signals to the clinical available hepatobiliary MR contrast agent gadoxetate disodium Gd-EOB-DTPA. Additionally, RWY-dL-(Gd-DOTA)4 showed minimal gadolinium retention in normal tissues and organs at 48 h post-injection.

Conclusion

These findings potentiate the use of RWY-dL-(Gd-DOTA)4 for the MRI of HCC to improve the diagnosis of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  Google Scholar 

  2. Feng R-M, Zong Y-N, Cao S-M, Xu R-H (2019) Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (London, England) 39:22

    Google Scholar 

  3. (2018) WHO | Hepatitis B 3rd dose (HepB3) immunization coverage. WHO

  4. Yuen M-F, Chen D-S, Dusheiko GM et al (2018) Hepatitis B virus infection. Nat Rev Dis Prim 4:18035

    PubMed  Google Scholar 

  5. Villanueva A (2019) Hepatocellular carcinoma. N Engl J Med 380:1450–1462

    CAS  PubMed  Google Scholar 

  6. Ishizawa T, Hasegawa K, Aoki T et al (2008) Neither multiple tumors nor portal hypertension are surgical contraindications for hepatocellular carcinoma. Gastroenterology 134:1908–1916

    PubMed  Google Scholar 

  7. Marquardt JU, Thorgeirsson SS (2014) SnapShot: hepatocellular carcinoma. Cancer Cell 25:550-550.e1

    Google Scholar 

  8. Singal A, Volk ML, Waljee A et al (2009) Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol Ther 30:37–47

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ronot M, Clift AK, Vilgrain V, Frilling A (2016) Functional imaging in liver tumours. J Hepatol 65:1017–1030

    PubMed  Google Scholar 

  10. Navin PJ, Venkatesh SK (2019) Hepatocellular carcinoma: state of the art imaging and recent advances. J Clin Transl Hepatol 7:72–85

    PubMed  PubMed Central  Google Scholar 

  11. Golfieri R, Grazioli L, Orlando E et al (2012) Which is the best MRI marker of malignancy for atypical cirrhotic nodules: hypointensity in hepatobiliary phase alone or combined with other features? Classification after Gd-EOB-DTPA administration. J Magn Reson Imaging 36:648–657

    PubMed  Google Scholar 

  12. Inchingolo R, Faletti R, Grazioli L et al (2018) MR with Gd-EOB-DTPA in assessment of liver nodules in cirrhotic patients. World J Hepatol 10:462–473

    PubMed  PubMed Central  Google Scholar 

  13. Bellissimo F, Pinzone MR, Cacopardo B, Nunnari G (2015) Diagnostic and therapeutic management of hepatocellular carcinoma. World J Gastroenterol 21:12003

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liao X, Wei J, Li Y et al (2018) 18F-FDG PET with or without CT in the diagnosis of extrahepatic metastases or local residual/recurrent hepatocellular carcinoma. Medicine (Baltimore) 97:e11970

    Google Scholar 

  15. Krebsbach PH, Villa-Diaz LG (2017) The role of integrin α6 (CD49f) in stem cells: more than a conserved biomarker. Stem Cells Dev 26:1090–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Begum NA, Mori M, Matsumata T et al (1995) Differential display and integrin alpha 6 messenger RNA overexpression in hepatocellular carcinoma. Hepatology 22:1447–1455

    CAS  PubMed  Google Scholar 

  17. Bergamini C, Sgarra C, Trerotoli P et al (2007) Laminin-5 stimulates hepatocellular carcinoma growth through a different function of α6β4 and α3β1 integrins. Hepatology 46:1801–1809

    CAS  PubMed  Google Scholar 

  18. Fu B-H, Wu Z-Z, Qin J (2011) Effects of integrin α6β1 on migration of hepatocellular carcinoma cells. Mol Biol Rep 38:3271–3276

    CAS  PubMed  Google Scholar 

  19. Hass HG, Vogel U, Scheurlen M, Jobst J (2016) Gene-expression analysis identifies specific patterns of dysregulated molecular pathways and genetic subgroups of human hepatocellular carcinoma. Anticancer Res 36:5087–5096

    CAS  PubMed  Google Scholar 

  20. Lv G, Lv T, Qiao S et al (2013) RNA interference targeting human integrin α6 suppresses the metastasis potential of hepatocellular carcinoma cells. Eur J Med Res 18:52

    PubMed  PubMed Central  Google Scholar 

  21. Kim YR, Byun MR, Choi JW (2018) Integrin α6 as an invasiveness marker for hepatitis B viral X-driven hepatocellular carcinoma. Cancer Biomarkers 23:135–144

    CAS  PubMed  Google Scholar 

  22. Jiang Y, Sun A, Zhao Y et al (2019) Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 567:257–261

    CAS  PubMed  Google Scholar 

  23. Feng G, Zhang M, Wang H, et al (2019) Identification of an integrin α6-targeted peptide for nasopharyngeal carcinoma-specific nanotherapeutics. Adv Ther 1900018

  24. GEPIA. http://gepia.cancer-pku.cn/detail.php?gene=ITGA6. Accessed 28 Jun 2019

  25. Feng G-K, Ye J-C, Zhang W-G et al (2019) Integrin α6 targeted positron emission tomography imaging of hepatocellular carcinoma in mouse models. J Control Release 310:11–21

    CAS  PubMed  Google Scholar 

  26. Wu X, Burden-Gulley SM, Yu G-P et al (2012) Synthesis and evaluation of a peptide targeted small molecular Gd-DOTA monoamide conjugate for MR molecular imaging of prostate cancer. Bioconjug Chem 23:1548–1556

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou Z, Qutaish M, Han Z et al (2015) MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nat Commun 6:7984

    CAS  PubMed  PubMed Central  Google Scholar 

  28. He L, Tian D-A, Li P-Y, He X-X (2015) Mouse models of liver cancer: Progress and recommendations. Oncotarget 6:23306–23322

    PubMed  PubMed Central  Google Scholar 

  29. Kondo Y, Kimura O, Shimosegawa T (2015) Significant biomarkers for the management of hepatocellular carcinoma. Clin J Gastroenterol 8:109–115

    PubMed  Google Scholar 

  30. Haruyama Y, Kataoka H (2016) Glypican-3 is a prognostic factor and an immunotherapeutic target in hepatocellular carcinoma. World J Gastroenterol 22:275

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou F, Shang W, Yu X, Tian J (2018) Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 38:741–767

    CAS  PubMed  Google Scholar 

  32. Yang X, Liu H, Sun CK et al (2014) Imaging of hepatocellular carcinoma patient-derived xenografts using 89Zr-labeled anti-glypican-3 monoclonal antibody. Biomaterials 35:6964–6971

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sham JG, Kievit FM, Grierson JR et al (2014) Glypican-3-targeting F(ab’)2 for 89Zr PET of hepatocellular carcinoma. J Nucl Med 55:2032–2037

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Chen Z, Li F et al (2012) Preparation and in vitro studies of MRI-specific superparamagnetic iron oxide antiGPC3 probe for hepatocellular carcinoma. Int J Nanomedicine 7:4593–4611

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Capurro M, Wanless IR, Sherman M et al (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125:89–97

    CAS  PubMed  Google Scholar 

  36. Wang X, Degos F, Dubois S et al (2006) Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum Pathol 37:1435–1441

    CAS  PubMed  Google Scholar 

  37. Zhang L, Liu H, Sun L et al (2012) Glypican-3 as a potential differential diagnosis marker for hepatocellular carcinoma: a tissue microarray-based study. Acta Histochem 114:547–552

    CAS  PubMed  Google Scholar 

  38. Yamauchi N, Watanabe A, Hishinuma M et al (2005) The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma. Mod Pathol 18:1591–1598

    CAS  PubMed  Google Scholar 

  39. Chaiteerakij R, Addissie BD, Roberts LR (2015) Update on biomarkers of hepatocellular carcinoma. Clin Gastroenterol Hepatol 13:237–245

    CAS  PubMed  Google Scholar 

  40. Torimura T, Ueno T, Kin M et al (1997) Coordinated expression of integrin alpha6beta1 and laminin in hepatocellular carcinoma. Hum Pathol 28:1131–1138

    CAS  PubMed  Google Scholar 

  41. Ozaki I, Yamamoto K, Mizuta T et al (1998) Differential expression of laminin receptors in human hepatocellular carcinoma. Gut 43:837–842

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Carloni V, Romanelli RG, Mercurio AM et al (1998) Knockout of alpha6 beta1-integrin expression reverses the transformed phenotype of hepatocarcinoma cells. Gastroenterology 115:433–442

    CAS  PubMed  Google Scholar 

  43. Torimura T, Ueno T, Kin M et al (1999) Integrin alpha6beta1 plays a significant role in the attachment of hepatoma cells to laminin. J Hepatol 31:734–740

    CAS  PubMed  Google Scholar 

  44. Ke A-W, Shi G-M, Zhou J et al (2011) CD151 amplifies signaling by integrin α6β1 to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology 140:1629–41.e15

    PubMed  Google Scholar 

  45. Zhou Z, Wu X, Kresak A et al (2013) Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials 34:7683–7693

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Yong-Jian Peng and Cheng Li for their helpful technical assistance.

Funding

This work was supported by grants from the National Natural Science Foundation of China (NSFC) (projects 81602364, 81671965, 81621004, 81520108022, 81572403), Science & Technology Project of Guangdong Province (2017A020211010 and 2014B020210002), the National Key R&D Program of China (2017YFA0505600 and 2016YFA0502100), Health & Medical Collaborative Innovation Project of Guangzhou City, China (201400000001 and 20150802024), and Sci-Tech Project Foundation of Guangzhou City (201607020038). The raw data used in this article has been uploaded onto the Research Data Deposit public platform (www.researchdata.org.cn), with the approval number as RDDB2019000667.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Miao Xie, Yong Jiang or Guo-Kai Feng.

Ethics declarations

All animal studies were approved by the Animal Care at Sun Yat-sen University Cancer Center, and in accordance with its guidelines.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, J., Cai, J. et al. Integrin α6-Targeted Magnetic Resonance Imaging of Hepatocellular Carcinoma in Mice. Mol Imaging Biol 22, 864–872 (2020). https://doi.org/10.1007/s11307-019-01437-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01437-z

Key words

Navigation