Longitudinal PET Imaging of α7 Nicotinic Acetylcholine Receptors with [18F]ASEM in a Rat Model of Parkinson’s Disease



The nicotinic acetylcholine alpha-7 receptors (α7R) are involved in a number of neuropsychiatric and neurodegenerative brain disorders such as Parkinson’s disease (PD). However, their specific pathophysiologic roles are still unclear. In this context, we studied the evolution of these receptors in vivo by positron emission tomography (PET) imaging using the recently developed tracer 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-[18F]fluorodibenzo[b,d]thiophene-5,5-dioxide) in a rat model mimicking early stages of PD.


PET imaging of α7R was performed at 3, 7, and 14 days following a partial striatal unilateral lesion with 6-hydroxydopamine in adult rats. After the last imaging experiments, the status of nigro-striatal dopamine neurons as well as different markers of neuroinflammation was evaluated on brain sections by autoradiographic and immunofluorescent experiments.


We showed an early and transitory rise in α7R expression in the lesioned striatum and substantia nigra, followed by over-expression of several gliosis activation markers in these regions of interest.


These findings support a longitudinally follow-up of α7R in animal models of PD and highlight the requirement to use a potential neuroprotective approach through α7R ligands at the early stages of PD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Thomsen MS, Hansen HH, Timmerman DB, Mikkelsen JD (2010) Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology. Curr Pharm Des 16:323–343

    CAS  Article  Google Scholar 

  2. 2.

    Dineley KT, Pandya AA, Yakel JL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 36:96–108

    CAS  Article  Google Scholar 

  3. 3.

    Fan H, Gu R, Wei D (2015) The alpha7 nAChR selective agonists as drug candidates for Alzheimer’s disease. Adv Exp Med Biol 827:353–365

    CAS  Article  Google Scholar 

  4. 4.

    Quik M, Zhang D, McGregor M, Bordia T (2015) Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem Pharmacol 97:399–407

    CAS  Article  Google Scholar 

  5. 5.

    Kalkman HO, Feuerbach D (2016) Modulatory effects of alpha7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 73:2511–2530

    CAS  Article  Google Scholar 

  6. 6.

    Brust P, Peters D, Deuther-Conrad W (2012) Development of radioligands for the imaging of alpha7 nicotinic acetylcholine receptors with positron emission tomography. Curr Drug Targets 13:594–601

    CAS  Article  Google Scholar 

  7. 7.

    Chalon S, Vercouillie J, Guilloteau D, Suzenet F, Routier S (2015) PET tracers for imaging brain alpha7 nicotinic receptors: an update. Chem Commun (Camb) 51:14826–14831

    CAS  Article  Google Scholar 

  8. 8.

    Gao Y, Kellar KJ, Yasuda RP, Tran T, Xiao Y, Dannals RF, Horti AG (2013) Derivatives of dibenzothiophene for positron emission tomography imaging of alpha7-nicotinic acetylcholine receptors. J Med Chem 56:7574–7589

    CAS  Article  Google Scholar 

  9. 9.

    Hillmer AT, Li S, Zheng MQ, Scheunemann M, Lin SF, Nabulsi N, Holden D, Pracitto R, Labaree D, Ropchan J, Teodoro R, Deuther-Conrad W, Esterlis I, Cosgrove KP, Brust P, Carson RE, Huang Y (2017) PET imaging of alpha7 nicotinic acetylcholine receptors: a comparative study of [18F]ASEM and [18F]DBT-10 in nonhuman primates, and further evaluation of [18F]ASEM in humans. Eur J Nucl Med Mol Imaging 44:1042–1050

    CAS  Article  Google Scholar 

  10. 10.

    Coughlin JM, Du Y, Rosenthal HB et al (2018) The distribution of the alpha7 nicotinic acetylcholine receptor in healthy aging: an in vivo positron emission tomography study with [18F]ASEM. Neuroimage 165:118–124

    CAS  Article  Google Scholar 

  11. 11.

    Wong DF, Kuwabara H, Horti AG, Roberts JM, Nandi A, Cascella N, Brasic J, Weerts EM, Kitzmiller K, Phan JA, Gapasin L, Sawa A, Valentine H, Wand G, Mishra C, George N, McDonald M, Lesniak W, Holt DP, Azad BB, Dannals RF, Kem W, Freedman R, Gjedde A (2018) Brain PET imaging of alpha7-nAChR with [18F]ASEM: reproducibility, occupancy, receptor density, and changes in schizophrenia. Int J Neuropsychopharmacol 21:656–667

    CAS  Article  Google Scholar 

  12. 12.

    Sérrière S, Doméné A, Vercouillie J et al (2015) Assessment of the protection of dopaminergic neurons by an α7 nicotinic receptor agonist, PHA543613 using [18F]LBT-999 in a Parkinson’s disease rat model. Front Med 2:61

    Article  Google Scholar 

  13. 13.

    Chalon S, Garreau L, Emond P et al (1999) Pharmacological characterization of (E)-N-(3-iodoprop-2-enyl)-2beta-carbomethoxy-3beta-(4′-methylphenyl)nortropane as a selective and potent inhibitor of the neuronal dopamine transporter. J Pharmacol Exp Ther 291:648–654

    CAS  PubMed  Google Scholar 

  14. 14.

    Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates. Elsevier Academic Press, San Diego

    Google Scholar 

  15. 15.

    Bertrand D, Chih-Hung LL, Flood D et al (2015) Therapeutic potential of α7 nicotinic acetylcholine receptors. Pharmacol Rev 67:1025–1073

    CAS  Article  Google Scholar 

  16. 16.

    Bertrand D, Terry AV (2018) The wonderland of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 151:214–225

    CAS  Article  Google Scholar 

  17. 17.

    Bordia T, McGregor M, Papke RL, Decker MW, Michael McIntosh J, Quik M (2015) The α7 nicotinic receptor agonist ABT-107 protects against nigrostriatal damage in rats with unilateral 6-hydroxydopamine lesions. Exp Neurol 263:277–284

    CAS  Article  Google Scholar 

  18. 18.

    Horti AG (2015) Development of [18F]ASEM, a specific radiotracer for quantification of the α7-nAChR with positron-emission tomography. Biochem Pharmacol 97:566–575

    CAS  Article  Google Scholar 

  19. 19.

    Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci 5:1307–1345

    CAS  Article  Google Scholar 

  20. 20.

    Whiteaker P, Davies AR, Marks MJ et al (1999) An autoradiographic study of the distribution of binding sites for the novel alpha7-selective nicotinic radioligand [3H]-methyllycaconitine in the mouse brain. Eur J Neurosci 11:2689–2696

    CAS  Article  Google Scholar 

  21. 21.

    Vetel S, Serriere S, Vercouillie J et al (2019) Extensive exploration of a novel rat model of Parkinson’s disease using partial 6-hydroxydopamine lesion of dopaminergic neurons suggests new therapeutic approaches. Synapse 73:e22077

    Article  Google Scholar 

  22. 22.

    Vingill S, Connor-Robson N, Wade-Martins R (2017) Are rodent models of Parkinson’s disease behaving as they should? Behav Brain Res 352:133–141

    Article  Google Scholar 

  23. 23.

    Hemshekhar M, Anaparti V, Hitchon C, Mookherjee N (2017) Buprenorphine alters inflammatory and oxidative stress molecular markers in arthritis. Mediat Inflamm 2017:2515408

    Article  Google Scholar 

  24. 24.

    Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Séguéla P (2002) ADP and AMP induce interleukin-1beta release from microglial cells through activation of ATP-primed P2X7 receptor channels. J Neurosci 22:3061–3069

    Article  Google Scholar 

  25. 25.

    Apolloni S, Amadio S, Parisi C, Matteucci A, Potenza RL, Armida M, Popoli P, D’Ambrosi N, Volonte C (2014) Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis. Dis Model Mech 7:1101–1109

    Article  Google Scholar 

  26. 26.

    Higashi Y, Aratake T, Shimizu S, Shimizu T, Nakamura K, Tsuda M, Yawata T, Ueba T, Saito M (2017) Influence of extracellular zinc on M1 microglial activation. Sci Rep 7:43778

    Article  Google Scholar 

  27. 27.

    Casteels C, Vermaelen P, Nuyts J et al (2006) Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 47:1858–1866

    PubMed  Google Scholar 

  28. 28.

    Sérrière S, Tauber C, Vercouillie J, Guilloteau D, Deloye JB, Garreau L, Galineau L, Chalon S (2014) In vivo PET quantification of the dopamine transporter in rat brain with [18F]LBT-999. Nucl Med Biol 41:106–113

    Article  Google Scholar 

  29. 29.

    Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401–415

    CAS  Article  Google Scholar 

  30. 30.

    Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337–343

    CAS  Article  Google Scholar 

  31. 31.

    Teaktong T, Graham A, Court J, Perry R, Jaros E, Johnson M, Hall R, Perry E (2003) Alzheimer’s disease is associated with a selective increase in alpha7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia 41:207–211

    Article  Google Scholar 

  32. 32.

    Zhang Q, Lu Y, Bian H et al (2017) Activation of the alpha7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am J Transl Res 9:971–985

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ambrosi G, Kustrimovic N, Siani F, Rasini E, Cerri S, Ghezzi C, Dicorato G, Caputo S, Marino F, Cosentino M, Blandini F (2017) Complex changes in the innate and adaptive immunity accompany progressive degeneration of the nigrostriatal pathway induced by Intrastriatal injection of 6-hydroxydopamine in the rat. Neurotox Res 32:71–81

    CAS  Article  Google Scholar 

  34. 34.

    Perego C, Fumagalli S, De Simoni MG (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 8:174

    CAS  Article  Google Scholar 

  35. 35.

    Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43:3063–3070

    CAS  Article  Google Scholar 

Download references


We thank the Laboratories Cyclopharma for providing fluor-18 and Sylvie Bodard for technical assistance.


This work was supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 278850 (INMiND), by Labex IRON (ANR-11-LABX-18-01), and by the Région Centre-Val de Loire project BIAlz (No. 2014 00091547).

Author information



Corresponding author

Correspondence to Sylvie Chalon.

Ethics declarations

All procedures were conducted in accordance with the requirements of the European Community Council Directive 2010/63/EU for the care of laboratory animals and with the authorization of the Regional Ethical Committee (Authorization No. 2016.022218004689 and No. 00434.02).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(PDF 175 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vetel, S., Vercouillie, J., Buron, F. et al. Longitudinal PET Imaging of α7 Nicotinic Acetylcholine Receptors with [18F]ASEM in a Rat Model of Parkinson’s Disease. Mol Imaging Biol 22, 348–357 (2020). https://doi.org/10.1007/s11307-019-01400-y

Download citation

Key words

  • Dopamine neurotransmission
  • Neurodegeneration
  • Neuroinflammation
  • Microglia
  • M1/M2 phenotype