Optical Redox Imaging of Fixed Unstained Muscle Slides Reveals Useful Biological Information

Abstract

Purpose

Optical redox imaging (ORI) technique images cellular autofluorescence of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp containing FAD, i.e., flavin adenine dinucleotide). ORI has found wide applications in the study of cellular energetics and metabolism and may potentially assist in disease diagnosis and prognosis. Fixed tissues have been reported to exhibit autofluorescence with similar spectral characteristics to those of NADH and Fp. However, few studies report on quantitative ORI of formalin-fixed paraffin-embedded (FFPE) unstained tissue slides for disease biomarkers. We investigate whether ORI of FFPE unstained skeletal muscle slides may provide relevant quantitative biological information.

Procedures

Living mouse muscle fibers and frozen and FFPE mouse muscle slides were subjected to ORI. Living mouse muscle fibers were imaged ex vivo before and after paraformaldehyde fixation. FFPE muscle slides of three mouse groups (young, mid-age, and muscle-specific overexpression of nicotinamide phosphoribosyltransferase (Nampt) transgenic mid-age) were imaged and compared to detect age-related redox differences.

Results

We observed that living muscle fiber and frozen and FFPE slides all had strong autofluorescence signals in the NADH and Fp channels. Paraformaldehyde fixation resulted in a significant increase in the redox ratio Fp/(NADH + Fp) of muscle fibers. Quantitative image analysis on FFPE unstained slides showed that mid-age gastrocnemius muscles had stronger NADH and Fp signals than young muscles. Gastrocnemius muscles from mid-age Nampt mice had lower NADH compared to age-matched controls, but had higher Fp than young controls. Soleus muscles had the same trend of change and appeared to be more oxidative than gastrocnemius muscles. Differential NADH and Fp signals were found between gastrocnemius and soleus muscles within both mid-aged control and Nampt groups.

Conclusion

Aging effect on redox status quantified by ORI of FFPE unstained muscle slides was reported for the first time. Quantitative information from ORI of FFPE unstained slides may be useful for biomedical applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Chance B, Baltscheffsky H (1958) Respiratory enzymes in oxidative phosphorylation. VII Binding of intramitochondrial reduced pyridine nucleotide. J Biol Chem 233:736–739

    CAS  PubMed  Google Scholar 

  2. 2.

    Chance B, Schoener B (1966) Fluorometric studies of flavin component of the respiratory chain. In: Slater EC (ed) Flavins and flavoproteins. Elsevier, New York, pp 510–519

  3. 3.

    Chance B, Cohen P, Jobsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Chance B, Schoener B, Oshino R, Itshak F, Nakase Y (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254:4764–4771

    CAS  Google Scholar 

  5. 5.

    Quistorff B, Haselgrove JC, Chance B (1985) High spatial resolution readout of 3-D metabolic organ structure: an automated, low-temperature redox ratio-scanning instrument. Anal Biochem 148:389–400

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Georgakoudi I, Quinn KP (2012) Optical imaging using endogenous contrast to assess metabolic state. Annu Rev Biomed Eng 14:351–367

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Xu HN, Li LZ (2014) Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity. J Innov Opt Health Sci 7:1430002

  8. 8.

    Xu HN, Feng M, Nath K, Nelson D, Roman J, Zhao H, Lin Z, Glickson J, Li LZ (2018) Optical redox imaging of lonidamine treatment response of melanoma cells and xenografts. Mol Imaging Biol. https://doi.org/10.1007/s11307-018-1258-z

  9. 9.

    Xu HN, Tchou J, Feng M, Zhao H, Li LZ (2016) Optical redox imaging indices discriminate human breast cancer from normal tissues. J Biomed Opt 21:114003

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kirkpatrick ND, Brewer MA, Utzinger U (2007) Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiol Biomark Prev 16:2048–2057

    Article  CAS  Google Scholar 

  11. 11.

    Li LZ, Zhou R, Xu HN, Moon L, Zhong T, Kim EJ, Qiao H, Reddy R, Leeper D, Chance B, Glickson JD (2009) Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential. Proc Natl Acad Sci U S A 106:6608–6613

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Xu HN, Nioka S, Glickson JD, Chance B, Li LZ (2010) Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J Biomed Opt 15:036010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Sun N, Xu HN, Luo Q, Li LZ (2016) Potential indexing of the invasiveness of breast cancer cells by mitochondrial redox ratios. Adv Exp Med Biol 923:121–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Alhallak K, Rebello LG, Muldoon TJ, Quinn KP, Rajaram N (2016) Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism. Biomed Opt Express 7:4364–4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Xu HN, Zhao H, Mir TA et al (2013) CHOP therapy induced mitochondrial redox state alteration in non-Hodgkin’s lymphoma xenografts. J Innov Opt Health Sci 6:1350011

  16. 16.

    Shah AT, Beckler MD, Walsh AJ et al (2014) Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma. PLoS One 9:e90746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Walsh AJ, Cook RS, Sanders ME, Aurisicchio L, Ciliberto G, Arteaga CL, Skala MC (2014) Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res 74:5184–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A, Arteaga CL, Skala MC (2013) Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res 73:6164–6174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Alam SR, Wallrabe H, Svindrych Z, Chaudhary AK, Christopher KG, Chandra D, Periasamy A (2017) Investigation of mitochondrial metabolic response to doxorubicin in prostate cancer cells: an NADH, FAD and tryptophan FLIM assay. Sci Rep 7:10451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kirkpatrick ND, Zou C, Brewer MA, Brands WR, Drezek RA, Utzinger U (2005) Endogenous fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoring. Photochem Photobiol 81:125–134

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Ramanujam N, Richards-Kortum R, Thomsen S, Mahadevan-Jansen A, Follen M, Chance B (2001) Low temperature fluorescence imaging of freeze-trapped human cervical tissues. Opt Express 8:335–343

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Ostrander JH, McMahon CM, Lem S et al (2010) Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res 70:4759–4766

    Article  CAS  Google Scholar 

  23. 23.

    Skala M, Ramanujam N (2010) Multiphoton redox ratio imaging for metabolic monitoring in vivo. Methods Mol Biol 594:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lowry OH, Passonneau JV (1972) Chapter 7—preparation of tissues for analysis. In: Lowry OH, Passonneau JV (Eds) A flexible system of enzymatic analysis. Academic Press, pp 120–128

  25. 25.

    Filippidis G, Zacharakis G, Katsamouris A, Giannoukas A, Kouktzela M, Papazoglou TG (1998) Effect of liquid-nitrogen and formalin-based conservation in the in vitro measurement of laser-induced fluorescence from peripheral vascular tissue. J Photochem Photobiol B 47:109–114

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Majumder SK, Ghosh N, Gupta PK (2005) N2 laser excited autofluorescence spectroscopy of formalin-fixed human breast tissue. J Photochem Photobiol B 81:33–42

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Xu MG, Williams ED, Thompson EW, Gu M (2000) Effect of handling and fixation processes on fluorescence spectroscopy of mouse skeletal muscles under two-photon excitation. Appl Opt 39:6312–6317

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Conklin MW, Provenzano PP, Eliceiri KW, Sullivan R, Keely PJ (2009) Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem Biophys 53:145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Xu Z, Reilley M, Li R, Xu M (2017) Mapping absolute tissue endogenous fluorophore concentrations with chemometric wide-field fluorescence microscopy. J Biomed Opt 22:66009

    Article  PubMed  Google Scholar 

  30. 30.

    Xu HN, Tchou J, Li Y et al (2018) Optical redox imaging of fixed unstained tissue slides to identify biomarkers for breast cancer diagnosis/prognosis: feasibility study. SPIE BiOS 10472:6

    Google Scholar 

  31. 31.

    Frederick DW, Davis JG, Dávila A et al (2014) Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem 290:1546–1558

  32. 32.

    Chance B, Connelly CM (1957) A method for the estimation of the increase in concentration of adenosine diphosphate in muscle sarcosomes following a contraction. Nature 179:1235–1237

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Chance B, Jobsis F (1959) Changes in fluorescence in a frog sartorius muscle following a twitch. Nature 184:195–196

    Article  CAS  Google Scholar 

  34. 34.

    Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Blinova K, Levine RL, Boja ES, Griffiths GL, Shi ZD, Ruddy B, Balaban RS (2008) Mitochondrial NADH fluorescence is enhanced by complex I binding. Biochemistry 47:9636–9645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Heikal AA (2010) Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med 4:241–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Claflin DR, Jackson MJ, Brooks SV (2015) Age affects the contraction-induced mitochondrial redox response in skeletal muscle. Front Physiol 6:21

  38. 38.

    Jacobs RA, Diaz V, Soldini L, Haider T, Thomassen M, Nordsborg NB, Gassmann M, Lundby C (2013) Fast-twitch glycolytic skeletal muscle is predisposed to age-induced impairments in mitochondrial function. J Gerontol A-Biol 68:1010–1022

    Article  CAS  Google Scholar 

  39. 39.

    Dapson RW (2007) Macromolecular changes caused by formalin fixation and antigen retrieval. Biotech Histochem 82:133–140

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Jackson KA, Snyder DS, Goodell MA (2004) Skeletal muscle fiber-specific green autofluorescence: potential for stem cell engraftment artifacts. Stem Cells 22:180–187

    Article  PubMed  Google Scholar 

  41. 41.

    Pugh TD, Conklin MW, Evans TD, Polewski MA, Barbian HJ, Pass R, Anderson BD, Colman RJ, Eliceiri KW, Keely PJ, Weindruch R, Beasley TM, Anderson RM (2013) A shift in energy metabolism anticipates the onset of sarcopenia in rhesus monkeys. Aging Cell 12:672–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Yoshino J, Baur JA, Imai SI (2018) NAD(+) intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab 27:513–528

    Article  CAS  Google Scholar 

  43. 43.

    Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R (2011) Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats. PLoS One 6:e19194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Mayevsky A, Rogatsky GG (2007) Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol 292:C615–C640

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Xu HN, Feng M, Moon L et al (2013) Redox imaging of the p53-dependent mitochondrial redox state in colon cancer ex vivo. J Innov Opt Health Sci 6:1350016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Xu HN, Nioka S, Li LZ (2013) Imaging heterogeneity in the mitochondrial redox state of premalignant pancreas in the pancreas-specific PTEN-null transgenic mouse model. Biomark Res 1:6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. William Quinn for providing the living muscle samples, Annemarie Jacob for her assistance during imaging the fixation effects, and Dr. Gordon Ruthel for his assistance in two-photon imaging. We also thank the Cell and Developmental Biology (CDB) Microscopy Core, Perelman School of Medicine and Penn Vet Imaging Core, School of Veterinary Medicine, University of Pennsylvania.

Funding

This work was supported by the NIH Grants R01CA191207 (L.Z. Li) and R01 DK098656 (J. A. Baur) and a pilot grant (L.Z. Li and J. A. Baur) from the University of Pennsylvania Institute on Aging.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to He N. Xu or Lin Z. Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H.N., Zhao, H., Chellappa, K. et al. Optical Redox Imaging of Fixed Unstained Muscle Slides Reveals Useful Biological Information. Mol Imaging Biol 21, 417–425 (2019). https://doi.org/10.1007/s11307-019-01348-z

Download citation

Key words

  • NADH and flavoproteins containing FAD
  • Redox ratio
  • Autofluorescence
  • Formalin-fixed unstained tissue slide
  • Muscle aging