In Vivo Pharmacokinetics Assessment of Indocyanine Green-Loaded Nanoparticles in Tumor Tissue with a Dynamic Diffuse Fluorescence Tomography System

Abstract

Purpose

The purpose of this study was to show a systematic strategy for assessing the pharmacokinetics of indocyanine green (ICG)-loaded nanoparticles in the tumor tissue based on a dynamic diffuse fluorescence tomography (DFT) system.

Procedures

Twelve-seven-week-old male Balb/c nude mice bearing HepG2/ADR hepatocellular carcinoma were randomly divided into four groups (n = 3 per group). Four hundred microliters of three types of ICG-loaded nanoparticles (content of ICG: 50 μg/ml) and free ICG (50 μg/ml) was intravenously injected into the mice in each group, respectively. Afterwards, the real-time tomographic images on the spatial level were acquired at 2–11 min, 30 min, 1, 2, 3, 4, 6, 8, 10, 12, and 24 h post-injection, and pharmacokinetic rates were derived for semi-quantitative assessment of the pharmacokinetics of nanoparticles at the tumor site using our proposed pharmacokinetic analysis method.

Results

The results obtained from our proposed dynamic DFT experiment demonstrated the distribution of different ICG formulations on the spatial level and enabled the semi-quantitative analysis of the pharmacokinetics of nanoparticles in the tumor tissue.

Conclusions

The obtained pharmacokinetic rates effectively reflected the metabolic processes of nanoparticles in the tumor tissue, which proves to be beneficial for the development of tumor diagnosis and therapy.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. 1.

    Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579

    CAS  Article  Google Scholar 

  2. 2.

    Jokar S, Pourjavadi A, Adeli M (2014) Albumin-graphene oxide conjugates; carriers for anticancer drugs. RSC Adv 4:33001–33006

    CAS  Article  Google Scholar 

  3. 3.

    Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716

    CAS  Article  Google Scholar 

  4. 4.

    Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investig 19:424–436

    CAS  Article  Google Scholar 

  5. 5.

    Tang S, Meng QS, Sun HP, Su J, Yin Q, Zhang Z, Yu H, Chen L, Gu W, Li Y (2017) Dual pH-sensitive micelles with charge-switch for controlling cellular uptake and drug release to treat metastatic breast cancer. Biomaterials 114:44–53

    CAS  Article  Google Scholar 

  6. 6.

    Song WT, Tang ZH, Zhang DW, Zhang Y, Yu H, Li M, Lv S, Sun H, Deng M, Chen X (2014) Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials 35:3005–3014

    CAS  Article  Google Scholar 

  7. 7.

    Zhao X, Yang CX, Chen LG, Yan XP (2017) Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat Commun 8:14998

    CAS  Article  Google Scholar 

  8. 8.

    Wang R, Zhou L, Wang WX, Li X, Zhang F (2017) In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun 8:14702

    Article  Google Scholar 

  9. 9.

    Tao ZM, Dang XN, Huang X, Muzumdar MD, Xu ES, Bardhan NM, Song H, Qi R, Yu Y, Li T, Wei W, Wyckoff J, Birrer MJ, Belcher AM, Ghoroghchian PP (2017) Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence. Biomaterials 134:202–205

    CAS  Article  Google Scholar 

  10. 10.

    Wan H, Yue JY, Zhu SJ, Uno T, Zhang X, Yang Q, Yu K, Hong G, Wang J, Li L, Ma Z, Gao H, Zhong Y, Su J, Antaris AL, Xia Y, Luo J, Liang Y, Dai H (2018) A bright organic NIR-II nanofluorophore for three dimensional imaging into biological tissues. Nat Commun 9:1171

    Article  Google Scholar 

  11. 11.

    Simon GH, Daldrup-Link HE, Kau J, Metz S, Schlegel J, Piontek G, Saborowski O, Demos S, Duyster J, Pichler BJ (2006) Optical imaging of experimental arthritis using allogeneic leukocytes labeled with a near-infrared fluorescent probe. Eur J Nucl Med Mol Imaging 33:998–1006

    CAS  Article  Google Scholar 

  12. 12.

    Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131

    CAS  Article  Google Scholar 

  13. 13.

    Schulz RB, Ale A, Sarantopoulos A, Freyer M, Soehngen E, Zientkowska M, Ntziachristos V (2010) A hybrid system for simultaneous fluorescence and x-ray computed tomography. IEEE Trans Med Imaging 29:465–473

    Article  Google Scholar 

  14. 14.

    Liu X, Zhang B, Luo JW, Bai J (2012) 4-D reconstruction for dynamic fluorescence diffuse optical tomography. IEEE Trans Med Imaging 31:2120–2132

    Article  Google Scholar 

  15. 15.

    Saxena V, Sadoqi M, Shao J (2004) Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release. Int J Pharm 278:293–301

    CAS  Article  Google Scholar 

  16. 16.

    Pichette J, Lapointe E, Bérubé-Lauzière Y (2008) Time-domain 3D localization of fluorescent inclusions in a thick scattering medium. Proc SPIE 7099:709907–1–709907–12

    Google Scholar 

  17. 17.

    Alacam B, Yazici B, Intes X, Nioka S, Chance B (2008) Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods. Phys Med Biol 53:837–859

    Article  Google Scholar 

  18. 18.

    Liu X, Guo XL, Liu F et al (2011) Imaging of indocyanine green perfusion in mouse liver with fluorescence diffuse optical tomography. IEEE Trans Biomed Eng 58:2139–2143

    Article  Google Scholar 

  19. 19.

    Zhang YQ, Zhang LM, Yin GY, Ma W, Gao F (2018) Assessing indocyanine green pharmacokinetics in mouse liver with a dynamic diffuse fluorescence tomography system. J Biophotonics 11:e201800041. https://doi.org/10.1002/jbio.201800041

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhang YQ, Wang X, Yin GY et al (2017) Dynamic experimental system for indocyanine green pharmacokinetic imaging. Chinese J Lasers 44:0107001–1–0107001-7

    Google Scholar 

  21. 21.

    Zhang YQ, Wang X, Yin GY et al (2016) Preliminary experiments on pharmacokinetic diffuse fluorescence tomography of CT-scanning mode. Proc SPIE 10024:100242Y-1–100242Y-7

    Google Scholar 

  22. 22.

    Sisson DF, Siegel J (1989) Chloral hydrate anesthesia: EEG power spectrum analysis and effects on VEPs in the rat. Neurotoxicol Teratol 11:51–56

    CAS  Article  Google Scholar 

  23. 23.

    Field KJ, White WJ, Lang CM (1993) Anaesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab Anim 27:258–269

    CAS  Article  Google Scholar 

  24. 24.

    Wan WB, Wang YH, Qi J, Liu L, Ma W, Li J, Zhang L, Zhou Z, Zhao H, Gao F (2016) Region−based diffuse optical tomography with registered atlas: in vivo acquisition of mouse optical properties. Biomed Opt Express 7:5066–5080

    Article  Google Scholar 

  25. 25.

    Sarantopoulos A, Themelis G, Ntziachristos V (2011) Imaging the bio-distribution of molecular probes using multispectral cryoslicing imaging. Mol Imag Biol 13:874–885

    Article  Google Scholar 

  26. 26.

    Gao F, Zhao HJ, Yamada Y et al (2006) A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography. Opt Express 14:7109–7124

    Article  Google Scholar 

  27. 27.

    Hyde D, Schulz R, Brooks D, Miller E, Ntziachristos V (2009) Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem. J Opt Soc Am A 26:919–923

    CAS  Article  Google Scholar 

  28. 28.

    Ale A, Schulz RB, Sarantopoulos A, Ntziachristos V (2010) Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors. Med Phys 37(5):1976–1986

    Article  Google Scholar 

  29. 29.

    Biesen PRVD, Jongsma FH, Tangelder GJ, Slaaf DW (1995) Yield of fluorescence from indocyanine green in plasma and flowing blood. Ann Biomed Eng 23:475–481

    Article  Google Scholar 

  30. 30.

    Landsman MLJ, Kwant G, Mook GA, Zijlstra WG (1976) Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 40:575–583

    CAS  Article  Google Scholar 

  31. 31.

    Shinohara H, Tanaka A, Kitai T, Yanabu N, Inomoto T, Satoh S, Hatano E, Yamaoka Y, Hirao K (1996) Direct measurement of hepatic indocyanine green clearance with near-infrared spectroscopy: separate evaluation of uptake and removal. Hepatology 23:137–144

    CAS  Article  Google Scholar 

  32. 32.

    Zhang GL, Liu F, Zhang B, He Y, Luo J, Bai J (2013) Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system. J Biomed Opt 18:040505

    Article  Google Scholar 

  33. 33.

    Alacam B, Yazici B, Intes X, Chance B (2006) Extended Kalman filtering for the modeling and analysis of ICG pharmacokinetics in cancerous tumors using NIR optical methods. IEEE T Biomed Eng 53:1861–1871

    Article  Google Scholar 

  34. 34.

    Shargel L, Susanna WP, Andrew BCY (2004) Applied biopharmaceutics and pharmacokinetics, 5th edn. McGraw-Hill Medical, New York, pp 62–86

    Google Scholar 

  35. 35.

    Saxena V, Sadoqi M, Shao J (2006) Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice. Int J Pharm 308:200–204

    CAS  Article  Google Scholar 

  36. 36.

    Singh Y, Durga KK, Kumar JA et al (2017) Click biotinylation of PLGA template for biotin receptor oriented delivery of doxorubicin hydrochloride in 4T1 cell induced breast cancer. Mol Pharm 14:2749–2765

    CAS  Article  Google Scholar 

  37. 37.

    Patel B, Gupta V, Ahsan F (2012) PEG-PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Control Release 162:310–320

    CAS  Article  Google Scholar 

  38. 38.

    Thambi T, Park JH (2014) Recent advances in shell-sheddable nanoparticles for cancer therapy. J Biomed Nanotechnol 10:1841–1862

    CAS  Article  Google Scholar 

  39. 39.

    Du JZ, Du XJ, Mao CQ, Wang J (2011) Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133:17560–17563

    CAS  Article  Google Scholar 

  40. 40.

    Sun CY, Shen S, Xu CF, Li HJ, Liu Y, Cao ZT, Yang XZ, Xia JX, Wang J (2015) Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J Am Chem Soc 137:15217–15224

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding support from the National Natural Science Foundation of China and Tianjin Municipal Government of China.

Funding

This study was funded by the National Natural Science Foundation of China (61475115, 81671728, 61475116, 61575140, 81571723, 81771880) and Tianjin Municipal Government of China (17JCZDJC32700, 18JCYBJC29400).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Limin Zhang or Feng Gao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, L., Yin, G. et al. In Vivo Pharmacokinetics Assessment of Indocyanine Green-Loaded Nanoparticles in Tumor Tissue with a Dynamic Diffuse Fluorescence Tomography System. Mol Imaging Biol 21, 1044–1053 (2019). https://doi.org/10.1007/s11307-019-01340-7

Download citation

Key words

  • Pharmacokinetics
  • Indocyanine green
  • Nanoparticles
  • Diffuse fluorescence tomography