Molecular Imaging and Biology

, Volume 20, Issue 6, pp 869–887 | Cite as

Current and Emerging Preclinical Approaches for Imaging-Based Characterization of Atherosclerosis

  • Jonathan Vigne
  • James Thackeray
  • Jeroen Essers
  • Marcus Makowski
  • Zoreh Varasteh
  • Adelina Curaj
  • Angelos Karlas
  • Emmanuel Canet-Soulas
  • Willem Mulder
  • Fabian Kiessling
  • Michael Schäfers
  • René Botnar
  • Moritz Wildgruber
  • Fabien HyafilEmail author
  • on behalf of the Cardiovascular study group of the European Society of Molecular Imaging
Review Article


Atherosclerotic plaques can remain quiescent for years, but become life threatening upon rupture or disruption, initiating clot formation in the vessel lumen and causing acute myocardial infarction and ischemic stroke. Whether and how a plaque ruptures is determined by its macroscopic structure and microscopic composition. Rupture-prone plaques usually consist of a thin fibrous cap with few smooth muscle cells, a large lipid core, a dense infiltrate of inflammatory cells, and neovessels. Such lesions, termed high-risk plaques, can remain asymptomatic until the thrombotic event. Various imaging technologies currently allow visualization of morphological and biological characteristics of high-risk atherosclerotic plaques. Conventional protocols are often complex and lack specificity for high-risk plaque. Conversely, new imaging approaches are emerging which may overcome these limitations. Validation of these novel imaging techniques in preclinical models of atherosclerosis is essential for effective translational to clinical practice. Imaging the vessel wall, as well as its biological milieu in small animal models, is challenging because the vessel wall is a small structure that undergoes continuous movements imposed by the cardiac cycle as it is adjacent to circulating blood. The focus of this paper is to provide a state-of-the-art review on techniques currently available for preclinical imaging of atherosclerosis in small animal models and to discuss the advantages and limitations of each approach.

Key words

Atherosclerosis Imaging-based characterization Preclinical approaches 



The writing of this review was initiated by the members of the Cardiovascular Study Group of the European Society for Molecular Imaging (ESMI). We gratefully thank the ESMI for its support and the possibility of establishing a study group for cardiovascular imaging as a platform for scientific exchange within the society and beyond.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Ärnlöv J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Bärnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castañeda-Orjuela CA, Castillo-Rivas J, Catalá-López F, Choi JY, Christensen H, Cirillo M, Cooper L Jr, Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, el Sayed Zaki M, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Havmoeller R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javanbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang YH, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lal DK, Larsson A, Linn S, Lopez A, Lotufo PA, el Razek HMA, Malekzadeh R, Mazidi M, Meier T, Meles KG, Mensah G, Meretoja A, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owolabi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safiri S, Salomon JA, Santos I, Santric Milicevic M, Sartorius B, Schutte A, Sepanlou S, Shaikh MA, Shin MJ, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabarés-Seisdedos R, Tadele Atnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Truelsen T, Tyrovolas S, Ukwaja KN, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolfe C, Workicho A, Xu G, Yano Y, Yip P, Yonemoto N, Younis M, Yu C, Vos T, Naghavi M, Murray C (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70:1–25PubMedPubMedCentralGoogle Scholar
  2. 2.
    Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672PubMedGoogle Scholar
  3. 3.
    Millon A, Canet-Soulas E, Boussel L et al (2013) Animal models of atherosclerosis and magnetic resonance imaging for monitoring plaque progression. Vascular.
  4. 4.
    Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP III, Rosenfeld ME, Virmani R (2017) Recommendation on design, execution, and reporting of animal atherosclerosis studies: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol 37:e131–e157PubMedGoogle Scholar
  5. 5.
    Hyafil F, Vucic E, Cornily J-C, Sharma R, Amirbekian V, Blackwell F, Lancelot E, Corot C, Fuster V, Galis ZS, Feldman LJ, Fayad ZA (2011) Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases. Eur Heart J 32:1561–1571PubMedGoogle Scholar
  6. 6.
    Helft G, Worthley SG, Fuster V, Fayad ZA, Zaman AG, Corti R, Fallon JT, Badimon JJ (2002) Progression and regression of atherosclerotic lesions: monitoring with serial noninvasive magnetic resonance imaging. Circulation 105:993–998PubMedGoogle Scholar
  7. 7.
    Millon A, Sigovan M, Boussel L, Mathevet JL, Louzier V, Paquet C, Geloen A, Provost N, Majd Z, Patsouris D, Serusclat A, Canet-Soulas E (2015) Low WSS induces intimal thickening, while large WSS variation and inflammation induce medial thinning, in an animal model of atherosclerosis. PLoS One 10:e0141880. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Verjans JW, Osborn EA, Ughi GJ, Calfon Press MA, Hamidi E, Antoniadis AP, Papafaklis MI, Conrad MF, Libby P, Stone PH, Cambria RP, Tearney GJ, Jaffer FA (2016) Targeted near-infrared fluorescence imaging of atherosclerosis: clinical and intracoronary evaluation of Indocyanine green. JACC Cardiovasc Imaging 9:1087–1095PubMedPubMedCentralGoogle Scholar
  9. 9.
    Steinl DC, Kaufmann BA (2015) Ultrasound imaging for risk assessment in atherosclerosis. Int J Mol Sci 16:9749–9769PubMedPubMedCentralGoogle Scholar
  10. 10.
    Polak JF, Pencina MJ, Pencina KM, O'Donnell CJ, Wolf PA, D'Agostino RB Sr (2011) Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med 365:213–221PubMedPubMedCentralGoogle Scholar
  11. 11.
    van Hoof RHM, Hermeling E, Sluimer JC, Salzmann J, Hoeks APG, Roussel J, Daemen MJAP, Struijker-Boudier H, Wildberger JE, Heeneman S, Kooi ME (2017) Heart rate lowering treatment leads to a reduction in vulnerable plaque features in atherosclerotic rabbits. PLoS One 12:e0179024. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang B, Gu J, Qian M, Niu L, Zhou H, Ghista D (2017) Correlation between quantitative analysis of wall shear stress and intima-media thickness in atherosclerosis development in carotid arteries. Biomed Eng Online 16:137. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Curaj A, Wu Z, Fokong S, Liehn EA, Weber C, Burlacu A, Lammers T, van Zandvoort M, Kiessling F (2015) Noninvasive molecular ultrasound monitoring of vessel healing after intravascular surgical procedures in a preclinical setup. Arterioscler Thromb Vasc Biol 35:1366–1373PubMedGoogle Scholar
  14. 14.
    Curaj A, Wu Z, Rix A, Gresch O, Sternkopf M, Alampour-Rajabi S, Lammers T, van Zandvoort M, Weber C, Koenen RR, Liehn EA, Kiessling F (2018) Molecular ultrasound imaging of junctional adhesion molecule a depicts acute alterations in blood flow and early endothelial dysregulation. Arterioscler Thromb Vasc Biol 38:40–48PubMedGoogle Scholar
  15. 15.
    Hsu S, Rifkin DE, Criqui MH, Suder NC, Garimella P, Ginsberg C, Marasco AM, McQuaide BJ, Barinas-Mitchell EJ, Allison MA, Wassel CL, Ix JH (2017) Relationship of femoral artery ultrasound measures of atherosclerosis with chronic kidney disease. J Vasc Surg doi 67:1855–1863.e1. CrossRefGoogle Scholar
  16. 16.
    Gao M, Hua Y, Zhao X, Jia L, Yang J, Liu B (2018) Optimal ultrasound criteria for grading stenosis of the superficial femoral artery. Ultrasound Med Biol 44:350–358PubMedGoogle Scholar
  17. 17.
    Rix A, Fokong S, Heringer S, Pjontek R, Kabelitz L, Theek B, Brockmann MA, Wiesmann M, Kiessling F (2016) Molecular ultrasound imaging of αvβ3-integrin expression in carotid arteries of pigs after vessel injury. Investig Radiol 51:767–775Google Scholar
  18. 18.
    Kaufmann BA, Sanders JM, Davis C, Xie A, Aldred P, Sarembock IJ, Lindner JR (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284PubMedGoogle Scholar
  19. 19.
    Shim CY, Liu YN, Atkinson T, Xie A, Foster T, Davidson BP, Treible M, Qi Y, López JA, Munday A, Ruggeri Z, Lindner JR (2015) Molecular imaging of platelet-endothelial interactions and endothelial von Willebrand factor in early and mid-stage atherosclerosis. Circ Cardiovasc Imaging 8:e002765. CrossRefPubMedGoogle Scholar
  20. 20.
    Wu Z, Curaj A, Fokong S, Liehn EA, Weber C, Lammers T, Kiessling F, Zandvoort van M (2013) Rhodamine-loaded intercellular adhesion molecule-1-targeted microbubbles for dual-modality imaging under controlled shear stresses. Circ Cardiovasc Imaging 6:974–981PubMedGoogle Scholar
  21. 21.
    Wang S, Unnikrishnan S, Herbst EB, Klibanov AL, Mauldin FW Jr, Hossack JA (2017) Ultrasound molecular imaging of inflammation in mouse abdominal aorta. Investig Radiol 52:499–506Google Scholar
  22. 22.
    Daeichin V, Kooiman K, Skachkov I, Bosch JG, Theelen TL, Steiger K, Needles A, Janssen BJ, Daemen MJAP, van der Steen AFW, de Jong N, Sluimer JC (2016) Quantification of endothelial αvβ3 expression with high-frequency ultrasound and targeted microbubbles: in vitro and in vivo studies. Ultrasound Med Biol 42:2283–2293PubMedGoogle Scholar
  23. 23.
    Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511PubMedGoogle Scholar
  24. 24.
    Lux J, Vezeridis AM, Hoyt K, Adams SR, Armstrong AM, Sirsi SR, Mattrey RF (2017) Thrombin-activatable microbubbles as potential ultrasound contrast agents for the detection of acute thrombosis. ACS Appl Mater Interfaces 9:37587–37596PubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang H, Xiong X, Zhang L, Wu C, Liu Y (2011) Adhesion of bio-functionalized ultrasound microbubbles to endothelial cells by targeting to vascular cell adhesion molecule-1 under shear flow. Int J Nanomedicine 6:2043–2051PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang Y-J, Bai D-N, Du J-X et al (2016) Ultrasound-guided imaging of junctional adhesion molecule-A-targeted microbubbles identifies vulnerable plaque in rabbits. Biomaterials 94:20–30PubMedGoogle Scholar
  27. 27.
    Xu Q, Ming Z, Dart AM, Du X-J (2007) Optimizing dosage of ketamine and xylazine in murine echocardiography. Clin Exp Pharmacol Physiol 34:499–507PubMedGoogle Scholar
  28. 28.
    Constantinides C, Mean R, Janssen BJ (2011) Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse. ILAR J 52:e21–e31PubMedPubMedCentralGoogle Scholar
  29. 29.
    Olson ME, Vizzutti D, Morck DW, Cox AK (1994) The parasympatholytic effects of atropine sulfate and glycopyrrolate in rats and rabbits. Can J Vet Res Rev Can Rech Veterinaire 58:254–258Google Scholar
  30. 30.
    Sanz J, Fayad ZA (2008) Imaging of atherosclerotic cardiovascular disease. Nature 451:953–957PubMedGoogle Scholar
  31. 31.
    Wildgruber M, Swirski FK, Zernecke A (2013) Molecular imaging of inflammation in atherosclerosis. Theranostics 3:865–884PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320Google Scholar
  33. 33.
    Jang I-K, Bouma BE, Kang D-H, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39:604–609PubMedGoogle Scholar
  34. 34.
    Bouma BE, Villiger M, Otsuka K, Oh W-Y (2017) Intravascular optical coherence tomography [invited]. Biomed Opt Express 8:2660–2686PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hahnenkamp A, Alsibai W, Bremer C, Höltke C (2014) Optimizing the bioavailability of small molecular optical imaging probes by conjugation to an albumin affinity tag. J Control Release 186:32–40PubMedGoogle Scholar
  36. 36.
    Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V (2012) FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat Methods 9:615–620PubMedGoogle Scholar
  37. 37.
    Ale A, Siebenhaar F, Kosanke K, Aichler M, Radrich K, Heydrich S, Schiemann M, Bielicki I, Noel PB, Braren R, Maurer M, Walch AK, Rummeny EJ, Ntziachristos V, Wildgruber M (2013) Cardioprotective C-kit+ bone marrow cells attenuate apoptosis after acute myocardial infarction in mice - in-vivo assessment with fluorescence molecular imaging. Theranostics 3:903–913PubMedPubMedCentralGoogle Scholar
  38. 38.
    Nahrendorf M, Waterman P, Thurber G, Groves K, Rajopadhye M, Panizzi P, Marinelli B, Aikawa E, Pittet MJ, Swirski FK, Weissleder R (2009) Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 29:1444–1451PubMedPubMedCentralGoogle Scholar
  39. 39.
    Glinzer A, Ma X, Prakash J, Kimm MA, Lohöfer F, Kosanke K, Pelisek J, Thon MP, Vorlova S, Heinze KG, Eckstein HH, Gee MW, Ntziachristos V, Zernecke A, Wildgruber M (2017) Targeting elastase for molecular imaging of early atherosclerotic lesions. Arterioscler Thromb Vasc Biol 37:525–533PubMedGoogle Scholar
  40. 40.
    Vinegoni C, Botnaru I, Aikawa E et al (2011) Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl med 3:84ra45. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Stein-Merlob AF, Hara T, McCarthy JR et al (2017) Atheroma Susceptible to Thrombosis Exhibit Impaired Endothelial Permeability In Vivo as Assessed by Nanoparticle-Based Fluorescence Molecular Imaging. Circ Cardiovasc Imaging 10.
  42. 42.
    Press MC, Jaffer FA (2014) Molecular intravascular imaging approaches for atherosclerosis. Curr Cardiovasc Imaging Rep 7:9293. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616PubMedPubMedCentralGoogle Scholar
  44. 44.
    Quintar A, McArdle S, Wolf D, Marki A, Ehinger E, Vassallo M, Miller J, Mikulski Z, Ley K, Buscher K (2017) Endothelial protective monocyte patrolling in large arteries intensified by western diet and atherosclerosis. Circ Res 120:1789–1799PubMedPubMedCentralGoogle Scholar
  45. 45.
    McArdle S, Mikulski Z, Ley K (2016) Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J Exp Med 213:1117–1131PubMedPubMedCentralGoogle Scholar
  46. 46.
    Razansky D, Deliolanis NC, Vinegoni C, Ntziachristos V (2012) Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery. Curr Pharm Biotechnol 13:504–522PubMedGoogle Scholar
  47. 47.
    Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614PubMedGoogle Scholar
  48. 48.
    Taruttis A, Timmermans AC, Wouters PC, Kacprowicz M, van Dam GM, Ntziachristos V (2016) Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology 281:256–263PubMedGoogle Scholar
  49. 49.
    Razansky D, Harlaar NJ, Hillebrands JL, Taruttis A, Herzog E, Zeebregts CJ, van Dam GM, Ntziachristos V (2012) Multispectral optoacoustic tomography of matrix metalloproteinase activity in vulnerable human carotid plaques. Mol Imaging Biol 14:277–285PubMedGoogle Scholar
  50. 50.
    Seeger M, Karlas A, Soliman D, Pelisek J, Ntziachristos V (2016) Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. Photoacoustics 4:102–111PubMedPubMedCentralGoogle Scholar
  51. 51.
    Karlas A, Reber J, Diot G, Bozhko D, Anastasopoulou M, Ibrahim T, Schwaiger M, Hyafil F, Ntziachristos V (2017) Flow-mediated dilatation test using optoacoustic imaging: a proof-of-concept. Biomed Opt Express 8:3395–3403PubMedPubMedCentralGoogle Scholar
  52. 52.
    Choudhury RP, Fuster V, Badimon JJ et al (2002) MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 22:1065–1074PubMedGoogle Scholar
  53. 53.
    Hyafil F, Feldman L, Le Guludec D, Fayad ZA (2012) Evaluating efficacy of pharmaceutical interventions in atherosclerosis: role of magnetic resonance imaging and positron emission tomography. Mt Sinai J Med N Y 79:689–704Google Scholar
  54. 54.
    Brasselet C, Durand E, Addad F, Zen AAH, Smeets MB, Laurent-Maquin D, Bouthors S, Bellon G, de Kleijn D, Godeau G, Garnotel R, Gogly B, Lafont A (2005) Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol 289:H2228–H2233PubMedGoogle Scholar
  55. 55.
    Krettek A, Sukhova GK, Libby P (2003) Elastogenesis in human arterial disease: a role for macrophages in disordered elastin synthesis. Arterioscler Thromb Vasc Biol 23:582–587PubMedGoogle Scholar
  56. 56.
    Nili N, Zhang M, Strauss BH, Bendeck MP (2002) Biochemical analysis of collagen and elastin synthesis in the balloon injured rat carotid artery. Cardiovasc Pathol 11:272–276PubMedGoogle Scholar
  57. 57.
    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352PubMedGoogle Scholar
  58. 58.
    Weissleder R, Hahn PF, Stark DD, Rummeny E, Saini S, Wittenberg J, Ferrucci JT (1987) MR imaging of splenic metastases: ferrite-enhanced detection in rats. AJR Am J Roentgenol 149:723–726PubMedGoogle Scholar
  59. 59.
    Weissleder R, Reimer P, Lee AS, Wittenberg J, Brady TJ (1990) MR receptor imaging: ultrasmall iron oxide particles targeted to asialoglycoprotein receptors. AJR Am J Roentgenol 155:1161–1167PubMedGoogle Scholar
  60. 60.
    Lee SH, Kim BH, Na HB, Hyeon T (2014) Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:196–209PubMedGoogle Scholar
  61. 61.
    Strijkers GJ, Mulder WJM, van Tilborg GAF, Nicolay K (2007) MRI contrast agents: current status and future perspectives. Anti Cancer Agents Med Chem 7:291–305Google Scholar
  62. 62.
    Lancelot E, Amirbekian V, Brigger I, Raynaud JS, Ballet S, David C, Rousseaux O, le Greneur S, Port M, Lijnen HR, Bruneval P, Michel JB, Ouimet T, Roques B, Amirbekian S, Hyafil F, Vucic E, Aguinaldo JGS, Corot C, Fayad ZA (2008) Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 28:425–432PubMedGoogle Scholar
  63. 63.
    Amirbekian V, Aguinaldo JGS, Amirbekian S, Hyafil F, Vucic E, Sirol M, Weinreb DB, le Greneur S, Lancelot E, Corot C, Fisher EA, Galis ZS, Fayad ZA (2009) Atherosclerosis and matrix metalloproteinases: experimental molecular MR imaging in vivo. Radiology 251:429–438PubMedPubMedCentralGoogle Scholar
  64. 64.
    Makowski MR, Wiethoff AJ, Blume U, Cuello F, Warley A, Jansen CHP, Nagel E, Razavi R, Onthank DC, Cesati RR, Marber MS, Schaeffter T, Smith A, Robinson SP, Botnar RM (2011) Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med 17:383–388PubMedGoogle Scholar
  65. 65.
    von Bary C, Makowski M, Preissel A, Keithahn A, Warley A, Spuentrup E, Buecker A, Lazewatsky J, Cesati R, Onthank D, Schickl N, Schachoff S, Hausleiter J, Schomig A, Schwaiger M, Robinson S, Botnar R (2011) MRI of coronary wall remodeling in a swine model of coronary injury using an elastin-binding contrast agent. Circ Cardiovasc Imaging 4:147–155Google Scholar
  66. 66.
    Onthank D, Yalamanchili P, Cesati R et al (2007) Abstract 1914: BMS753951: a novel low molecular weight magnetic resonance contrast agent selective for arterial wall imaging. Circulation 116:II:411-II_412Google Scholar
  67. 67.
    Yu X, Song SK, Chen J, Scott MJ, Fuhrhop RJ, Hall CS, Gaffney PJ, Wickline SA, Lanza GM (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44:867–872PubMedGoogle Scholar
  68. 68.
    Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285PubMedGoogle Scholar
  69. 69.
    Sirol M, Aguinaldo JGS, Graham PB, Weisskoff R, Lauffer R, Mizsei G, Chereshnev I, Fallon JT, Reis E, Fuster V, Toussaint JF, Fayad ZA (2005) Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 182:79–85PubMedGoogle Scholar
  70. 70.
    Botnar RM, Perez AS, Witte S, Wiethoff AJ, Laredo J, Hamilton J, Quist W, Parsons EC Jr, Vaidya A, Kolodziej A, Barrett JA, Graham PB, Weisskoff RM, Manning WJ, Johnstone MT (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029PubMedPubMedCentralGoogle Scholar
  71. 71.
    Spuentrup E, Botnar RM, Wiethoff AJ, Ibrahim T, Kelle S, Katoh M, Özgun M, Nagel E, Vymazal J, Graham PB, Günther RW, Maintz D (2008) MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol 18:1995–2005PubMedGoogle Scholar
  72. 72.
    Briley-Saebo KC, Mulder WJM, Mani V, Hyafil F, Amirbekian V, Aguinaldo JGS, Fisher EA, Fayad ZA (2007) Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes. J Magn Reson Imaging JMRI 26:460–479PubMedGoogle Scholar
  73. 73.
    Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JGS, Weinreb DB, Vucic E, Frias JC, Hyafil F, Mani V, Fisher EA, Fayad ZA (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A 104:961–966PubMedPubMedCentralGoogle Scholar
  74. 74.
    Briley-Saebo KC, Shaw PX, Mulder WJM, Choi SH, Vucic E, Aguinaldo JGS, Witztum JL, Fuster V, Tsimikas S, Fayad ZA (2008) Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 117:3206–3215PubMedPubMedCentralGoogle Scholar
  75. 75.
    Cormode DP, Briley-Saebo KC, Mulder WJM, Aguinaldo JGS, Barazza A, Ma Y, Fisher EA, Fayad ZA (2008) An ApoA-I mimetic peptide high-density-lipoprotein-based MRI contrast agent for atherosclerotic plaque composition detection. Small Weinh Bergstr Ger 4:1437–1444Google Scholar
  76. 76.
    Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, Calcagno C, Barazza A, Gordon RE, Zanzonico P, Fisher EA, Fayad ZA, Mulder WJM (2008) Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett 8:3715–3723PubMedPubMedCentralGoogle Scholar
  77. 77.
    Litovsky S, Madjid M, Zarrabi A, Casscells SW, Willerson JT, Naghavi M (2003) Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Circulation 107:1545–1549PubMedGoogle Scholar
  78. 78.
    Yancy AD, Olzinski AR, Hu TC-C, Lenhard SC, Aravindhan K, Gruver SM, Jacobs PM, Willette RN, Jucker BM (2005) Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling. J Magn Reson Imaging JMRI 21:432–442PubMedGoogle Scholar
  79. 79.
    Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422PubMedGoogle Scholar
  80. 80.
    Hyafil F, Laissy J-P, Mazighi M et al (2006) Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol 26:176–181PubMedGoogle Scholar
  81. 81.
    Kooi ME, Cappendijk VC, Cleutjens KBJM, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven J (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458PubMedGoogle Scholar
  82. 82.
    Trivedi RA, Mallawarachi C, U-King-Im J-M et al (2006) Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 26:1601–1606PubMedGoogle Scholar
  83. 83.
    Smits LP, Tiessens F, Zheng KH, Stroes ES, Nederveen AJ, Coolen BF (2017) Evaluation of ultrasmall superparamagnetic iron-oxide (USPIO) enhanced MRI with ferumoxytol to quantify arterial wall inflammation. Atherosclerosis 263:211–218PubMedGoogle Scholar
  84. 84.
    Goel S, Miller A, Agarwal C, Zakin E, Acholonu M, Gidwani U, Sharma A, Kulbak G, Shani J, Chen O (2015) Imaging modalities to identity inflammation in an atherosclerotic plaque. Radiol Res Pract 2015:410967–410913. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Zagorchev L, Oses P, Zhuang ZW, Moodie K, Mulligan-Kehoe M, Simons M, Couffinhal T (2010) Micro computed tomography for vascular exploration. J Angiogenesis Res 2:7. CrossRefGoogle Scholar
  86. 86.
    Langheinrich AC, Bohle RM, Greschus S, Hackstein N, Walker G, von Gerlach S, Rau WS, Hölschermann H (2004) Atherosclerotic lesions at micro CT: feasibility for analysis of coronary artery wall in autopsy specimens. Radiology 231:675–681PubMedGoogle Scholar
  87. 87.
    Coscas R, Bensussan M, Jacob M-P, Louedec L, Massy Z, Sadoine J, Daudon M, Chaussain C, Bazin D, Michel JB (2017) Free DNA precipitates calcium phosphate apatite crystals in the arterial wall in vivo. Atherosclerosis 259:60–67PubMedGoogle Scholar
  88. 88.
    Wanga S, Hibender S, Ridwan Y, van Roomen C, Vos M, van der Made I, van Vliet N, Franken R, van Riel LAMJG, Groenink M, Zwinderman AH, Mulder BJM, de Vries CJM, Essers J, de Waard V (2017) Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome. J Pathol 243:294–306PubMedGoogle Scholar
  89. 89.
    Xing R, De Wilde D, McCann G et al (2016) Contrast-enhanced micro-CT imaging in murine carotid arteries: a new protocol for computing wall shear stress. Biomed Eng Online 15:156. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    van Deel E, Ridwan Y, van Vliet JN et al (2016) In vivo quantitative assessment of myocardial structure, function, perfusion and viability using cardiac micro-computed tomography. J Vis Exp JoVE 53603.
  91. 91.
    Mannheim JG, Schlichthaerle T, Kuebler L, Quintanilla-Martinez L, Kohlhofer U, Kneilling M, Pichler BJ (2016) Comparison of small animal CT contrast agents. Contrast Media Mol Imaging 11:272–284PubMedGoogle Scholar
  92. 92.
    Hyafil F, Cornily J-C, Feig JE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA (2007) Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13:636–641PubMedGoogle Scholar
  93. 93.
    Hetterich H, Willner M, Fill S, Herzen J, Bamberg F, Hipp A, Schüller U, Adam-Neumair S, Wirth S, Reiser M, Pfeiffer F, Saam T (2014) Phase-contrast CT: qualitative and quantitative evaluation of atherosclerotic carotid artery plaque. Radiology 271:870–878PubMedGoogle Scholar
  94. 94.
    Clark DP, Badea CT (2014) Micro-CT of rodents: state-of-the-art and future perspectives. Phys Medica PM Int J Devoted Appl Phys Med Biol 30:619–634Google Scholar
  95. 95.
    Bhavane R, Badea C, Ghaghada KB, Clark D, Vela D, Moturu A, Annapragada A, Johnson GA, Willerson JT, Annapragada A (2013) Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent. Circ Cardiovasc Imaging 6:285–294PubMedPubMedCentralGoogle Scholar
  96. 96.
    Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R (2008) Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 53:4031–4047PubMedGoogle Scholar
  97. 97.
    Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, Fuster V, Fisher EA, Mulder WJM, Proksa R, Fayad ZA (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256:774–782PubMedPubMedCentralGoogle Scholar
  98. 98.
    Feuerlein S, Roessl E, Proksa R, Martens G, Klass O, Jeltsch M, Rasche V, Brambs HJ, Hoffmann MHK, Schlomka JP (2008) Multienergy photon-counting K-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology 249:1010–1016PubMedGoogle Scholar
  99. 99.
    Li X, Bauer W, Kreissl MC, Weirather J, Bauer E, Israel I, Richter D, Riehl G, Buck A, Samnick S (2013) Specific somatostatin receptor II expression in arterial plaque: (68)Ga-DOTATATE autoradiographic, immunohistochemical and flow cytometric studies in apoE-deficient mice. Atherosclerosis 230:33–39PubMedGoogle Scholar
  100. 100.
    Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, Starks LT, Martin-Garrido A, Manavaki R, Yu E, Kuc RE, Grassi L, Kreuzhuber R, Kostadima MA, Frontini M, Kirkpatrick PJ, Coughlin PA, Gopalan D, Fryer TD, Buscombe JR, Groves AM, Ouwehand WH, Bennett MR, Warburton EA, Davenport AP, Rudd JHF (2017) Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J Am Coll Cardiol 69:1774–1791PubMedPubMedCentralGoogle Scholar
  101. 101.
    Silvola JMU, Saraste A, Laitinen I, Savisto N, Laine VJO, Heinonen SE, Ylä-Herttuala S, Saukko P, Nuutila P, Roivainen A, Knuuti J (2011) Effects of age, diet, and type 2 diabetes on the development and FDG uptake of atherosclerotic plaques. JACC Cardiovasc Imaging 4:1294–1301PubMedGoogle Scholar
  102. 102.
    Tahara N, Mukherjee J, de Haas HJ, Petrov AD, Tawakol A, Haider N, Tahara A, Constantinescu CC, Zhou J, Boersma HH, Imaizumi T, Nakano M, Finn A, Fayad Z, Virmani R, Fuster V, Bosca L, Narula J (2014) 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med 20:215–219PubMedGoogle Scholar
  103. 103.
    Rudd JHF, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, Johnström P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711PubMedGoogle Scholar
  104. 104.
    Hyafil F, Pelisek J, Laitinen I, Schottelius M, Mohring M, Döring Y, van der Vorst EPC, Kallmayer M, Steiger K, Poschenrieder A, Notni J, Fischer J, Baumgartner C, Rischpler C, Nekolla SG, Weber C, Eckstein HH, Wester HJ, Schwaiger M (2017) Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the Radiotracer68Ga-Pentixafor for PET. J Nucl Med 58:499–506PubMedGoogle Scholar
  105. 105.
    Tekabe Y, Johnson LL, Rodriquez K, Li Q, Backer M, Backer JM (2018) Selective imaging of vascular endothelial growth factor receptor-1 and receptor-2 in atherosclerotic lesions in diabetic and non-diabetic ApoE−/−mice. Mol Imaging Biol 20:85–93PubMedGoogle Scholar
  106. 106.
    Razavian M, Tavakoli S, Zhang J, Nie L, Dobrucki LW, Sinusas AJ, Azure M, Robinson S, Sadeghi MM (2011) Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 52:1795–1802PubMedPubMedCentralGoogle Scholar
  107. 107.
    Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S, Seidl S, Kessler H, Wester HJ, Eckstein HH, Schwaiger M (2014) PET/CT imaging of integrin αvβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging 7:178–187PubMedGoogle Scholar
  108. 108.
    Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, Leppanen P, Yla-Herttuala S, Holzlwimmer G, Walch A, Esposito I, Wester HJ, Knuuti J, Schwaiger M (2009) Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2:331–338PubMedGoogle Scholar
  109. 109.
    Li Y, Berenji GR, Shaba WF, Tafti B, Yevdayev E, Dadparvar S (2012) Association of vascular fluoride uptake with vascular calcification and coronary artery disease. Nucl Med Commun 33:14–20PubMedGoogle Scholar
  110. 110.
    Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, Yeoh SE, Wallace W, Salter D, Fletcher AM, van Beek EJR, Flapan AD, Uren NG, Behan MWH, Cruden NLM, Mills NL, Fox KAA, Rudd JHF, Dweck MR, Newby DE (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet Lond Engl 383:705–713Google Scholar
  111. 111.
    Tawakol A, Ishai A, Takx RA et al (2017) Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet Lond Engl 389:834–845Google Scholar
  112. 112.
    Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, Fuster V, Ballantyne CM, Stein EA, Tardif JC, Rudd JH, Farkouh ME, Tawakol A, dal-PLAQUE Investigators (2011) Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet Lond Engl 378:1547–1559Google Scholar
  113. 113.
    Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, Brady TJ, Tawakol A (2010) Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 3:388–397PubMedGoogle Scholar
  114. 114.
    Rinne P, Hellberg S, Kiugel M, Virta J, Li XG, Käkelä M, Helariutta K, Luoto P, Liljenbäck H, Hakovirta H, Gardberg M, Airaksinen AJ, Knuuti J, Saraste A, Roivainen A (2016) Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol Imaging Biol MIB Off Publ Acad Mol Imaging 18:99–108Google Scholar
  115. 115.
    Thackeray JT, Bankstahl JP, Wang Y, Korf-Klingebiel M, Walte A, Wittneben A, Wollert KC, Bengel FM (2015) Targeting post-infarct inflammation by PET imaging: comparison of (68)Ga-citrate and (68)Ga-DOTATATE with (18)F-FDG in a mouse model. Eur J Nucl Med Mol Imaging 42:317–327PubMedGoogle Scholar
  116. 116.
    Hellberg S, Silvola JMU, Kiugel M, Liljenbäck H, Savisto N, Li XG, Thiele A, Lehmann L, Heinrich T, Vollmer S, Hakovirta H, Laine VJO, Ylä-Herttuala S, Knuuti J, Roivainen A, Saraste A (2017) 18-kDa translocator protein ligand18F-FEMPA: biodistribution and uptake into atherosclerotic plaques in mice. J Nucl Cardiol 24:862–871PubMedGoogle Scholar
  117. 117.
    Gaemperli O, Shalhoub J, Owen DRJ, Lamare F, Johansson S, Fouladi N, Davies AH, Rimoldi OE, Camici PG (2012) Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J 33:1902–1910PubMedGoogle Scholar
  118. 118.
    Varasteh Z, Hyafil F, Anizan N, Diallo D, Aid-Launais R, Mohanta S, Li Y, Braeuer M, Steiger K, Vigne J, Qin Z, Nekolla SG, Fabre JE, Döring Y, le Guludec D, Habenicht A, Vera DR, Schwaiger M (2017) Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 111 In-tilmanocept. EJNMMI Res 7:40. CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Kim EJ, Kim S, Seo HS, Lee YJ, Eo JS, Jeong JM, Lee B, Kim JY, Park YM, Jeong M (2016) Novel PET imaging of atherosclerosis with 68Ga-labeled NOTA-neomannosylated human serum albumin. J Nucl Med 57:1792–1797PubMedGoogle Scholar
  120. 120.
    Meletta R, Steier L, Borel N, Mu L, Keller C, Chiotellis A, Russo E, Halin C, Ametamey SM, Schibli R, Krämer SD, Müller Herde A (2017) CD80 is upregulated in a mouse model with shear stress-induced atherosclerosis and allows for evaluating CD80-targeting PET tracers. Mol Imaging Biol 19:90–99PubMedGoogle Scholar
  121. 121.
    Weiberg D, Thackeray JT, Daum G, Sohns JM, Kropf S, Wester HJ, Ross TL, Bengel FM, Derlin T (2018) Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-Pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J Nucl Med 59:266–272PubMedGoogle Scholar
  122. 122.
    Meletta R, Slavik R, Mu L, Rancic Z, Borel N, Schibli R, Ametamey SM, Krämer SD, Müller Herde A (2017) Cannabinoid receptor type 2 (CB2) as one of the candidate genes in human carotid plaque imaging: evaluation of the novel radiotracer [11C]RS-016 targeting CB2 in atherosclerosis. Nucl Med Biol 47:31–43PubMedGoogle Scholar
  123. 123.
    Bala G, Blykers A, Xavier C, Descamps B, Broisat A, Ghezzi C, Fagret D, van Camp G, Caveliers V, Vanhove C, Lahoutte T, Droogmans S, Cosyns B, Devoogdt N, Hernot S (2016) Targeting of vascular cell adhesion molecule-1 by 18F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. Eur Heart J Cardiovasc Imaging 17:1001–1008PubMedGoogle Scholar
  124. 124.
    Liu C, Zhang X, Song Y, Wang Y, Zhang F, Zhang Y, Zhang Y, Lan X (2016) SPECT and fluorescence imaging of vulnerable atherosclerotic plaque with a vascular cell adhesion molecule 1 single-chain antibody fragment. Atherosclerosis 254:263–270PubMedGoogle Scholar
  125. 125.
    Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, Figueiredo JL, Aikawa E, Kelly K, Libby P, Weissleder R (2009) 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging 2:1213–1222PubMedPubMedCentralGoogle Scholar
  126. 126.
    Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, Gropler RJ, Hawker CJ, Liu Y (2016) PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J Nucl Med 57:1124–1129PubMedPubMedCentralGoogle Scholar
  127. 127.
    Hellberg S, Silvola JMU, Kiugel M, Liljenbäck H, Metsälä O, Viljanen T, Metso J, Jauhiainen M, Saukko P, Nuutila P, Ylä-Herttuala S, Knuuti J, Roivainen A, Saraste A (2016) Type 2 diabetes enhances arterial uptake of choline in atherosclerotic mice: an imaging study with positron emission tomography tracer 18F-fluoromethylcholine. Cardiovasc Diabetol 15:26. CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Bucerius J, Schmaljohann J, Böhm I, Palmedo H, Guhlke S, Tiemann K, Schild HH, Biersack HJ, Manka C (2008) Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans--first results. Eur J Nucl Med Mol Imaging 35:815–820PubMedGoogle Scholar
  129. 129.
    De Bruin AFJ, Schouten SB, de Kort PPS et al (2009) The impact of chronic smoking on rectal mucosal blood flow. Tech Coloproctology 13:269–272Google Scholar
  130. 130.
    Majmudar MD, Yoo J, Keliher EJ, Truelove JJ, Iwamoto Y, Sena B, Dutta P, Borodovsky A, Fitzgerald K, di Carli MF, Libby P, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M (2013) Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res 112:755–761PubMedPubMedCentralGoogle Scholar
  131. 131.
    Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387PubMedGoogle Scholar
  132. 132.
    Jager NA, Westra J, Golestani R, van Dam GM, Low PS, Tio RA, Slart RHJA, Boersma HH, Bijl M, Zeebregts CJ (2014) Folate receptor-β imaging using 99mTc-folate to explore distribution of polarized macrophage populations in human atherosclerotic plaque. J Nucl Med 55:1945–1951PubMedGoogle Scholar
  133. 133.
    Glaudemans AWJM, Bonanno E, Galli F, Zeebregts CJ, de Vries EFJ, Koole M, Luurtsema G, Boersma HH, Taurino M, Slart RHJA, Signore A (2014) In vivo and in vitro evidence that 99mTc-HYNIC-interleukin-2 is able to detect T lymphocytes in vulnerable atherosclerotic plaques of the carotid artery. Eur J Nucl Med Mol Imaging 41:1710–1719PubMedGoogle Scholar
  134. 134.
    Di Gialleonardo V, Signore A, Glaudemans AWJM et al (2012) N-(4-18F-fluorobenzoyl)interleukin-2 for PET of human-activated T lymphocytes. J Nucl Med 53:679–686PubMedGoogle Scholar
  135. 135.
    Ye Y-X, Calcagno C, Binderup T, Courties G, Keliher EJ, Wojtkiewicz GR, Iwamoto Y, Tang J, Pérez-Medina C, Mani V, Ishino S, Johnbeck CB, Knigge U, Fayad ZA, Libby P, Weissleder R, Tawakol A, Dubey S, Belanger AP, di Carli MF, Swirski FK, Kjaer A, Mulder WJM, Nahrendorf M (2015) Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis. Circ Res 117:835–845PubMedPubMedCentralGoogle Scholar
  136. 136.
    Golestani R, Zeebregts CJ, Terwisscha van Scheltinga AGT, Lub-de Hooge MN, van Dam G, Glaudemans AW, Dierckx RA, Tio RA, Suurmeijer AJ, Boersma HH, Nagengast WB, Slart RH (2013) Feasibility of vascular endothelial growth factor imaging in human atherosclerotic plaque using (89)Zr-bevacizumab positron emission tomography. Mol Imaging 12:235–243PubMedGoogle Scholar
  137. 137.
    Golestani R, Razavian M, Nie L, Zhang J, Jung JJ, Ye Y, de Roo M, Hilgerink K, Liu C, Robinson SP, Sadeghi MM (2015) Imaging vessel wall biology to predict outcome in abdominal aortic aneurysm. Circ Cardiovasc Imaging 8:e002471. CrossRefPubMedGoogle Scholar
  138. 138.
    Razavian M, Marfatia R, Mongue-Din H, Tavakoli S, Sinusas AJ, Zhang J, Nie L, Sadeghi MM (2011) Integrin-targeted imaging of inflammation in vascular remodeling. Arterioscler Thromb Vasc Biol 31:2820–2826PubMedPubMedCentralGoogle Scholar
  139. 139.
    Liu H, Jin H, Han J et al (2017) Upregulated sphingosine 1-phosphate receptor 1 expression in human and murine atherosclerotic plaques. Mol Imaging Biol 20:448–456Google Scholar
  140. 140.
    Silvola JMU, Virtanen H, Siitonen R, Hellberg S, Liljenbäck H, Metsälä O, Ståhle M, Saanijoki T, Käkelä M, Hakovirta H, Ylä-Herttuala S, Saukko P, Jauhiainen M, Veres TZ, Jalkanen S, Knuuti J, Saraste A, Roivainen A (2016) Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques. Sci Rep 6:35089. CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Bigalke B, Phinikaridou A, Andia ME, Cooper MS, Schuster A, Wurster T, Onthank D, Münch G, Blower P, Gawaz M, Nagel E, Botnar RM (2014) PET/CT and MR imaging biomarker of lipid-rich plaques using [64Cu]-labeled scavenger receptor (CD68-Fc). Int J Cardiol 177:287–291PubMedGoogle Scholar
  142. 142.
    Pérez-Medina C, Binderup T, Lobatto ME, Tang J, Calcagno C, Giesen L, Wessel CH, Witjes J, Ishino S, Baxter S, Zhao Y, Ramachandran S, Eldib M, Sánchez-Gaytán BL, Robson PM, Bini J, Granada JF, Fish KM, Stroes ESG, Duivenvoorden R, Tsimikas S, Lewis JS, Reiner T, Fuster V, Kjær A, Fisher EA, Fayad ZA, Mulder WJM (2016) In vivo PET imaging of HDL in multiple atherosclerosis models. JACC Cardiovasc Imaging 9:950–961PubMedPubMedCentralGoogle Scholar
  143. 143.
    Mateo J, Izquierdo-Garcia D, Badimon JJ, Fayad ZA, Fuster V (2014) Noninvasive assessment of hypoxia in rabbit advanced atherosclerosis using 18F-fluoromisonidazole positron emission tomographic imaging. Circ Cardiovasc Imaging 7:312–320PubMedPubMedCentralGoogle Scholar
  144. 144.
    van der Valk FM, Sluimer JC, Vöö SA, Verberne HJ, Nederveen AJ, Windhorst AD, Stroes ESG, Lambin P, Daemen MJAP (2015) In vivo imaging of hypoxia in atherosclerotic plaques in humans. JACC Cardiovasc Imaging 8:1340–1341PubMedGoogle Scholar
  145. 145.
    Zhang J, Nie L, Razavian M, Ahmed M, Dobrucki LW, Asadi A, Edwards DS, Azure M, Sinusas AJ, Sadeghi MM (2008) Molecular imaging of activated matrix metalloproteinases in vascular remodeling. Circulation 118:1953–1960PubMedPubMedCentralGoogle Scholar
  146. 146.
    Razavian M, Nie L, Challa A, Zhang J, Golestani R, Jung JJ, Robinson S, Sadeghi MM (2014) Lipid lowering and imaging protease activation in atherosclerosis. J Nucl Cardiol 21:319–328PubMedGoogle Scholar
  147. 147.
    Li X, Bauer W, Israel I, Kreissl MC, Weirather J, Richter D, Bauer E, Herold V, Jakob P, Buck A, Frantz S, Samnick S (2014) Targeting P-selectin by gallium-68-labeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques: correlation with in vivo 17.6T MRI. Arterioscler Thromb Vasc Biol 34:1661–1667PubMedGoogle Scholar
  148. 148.
    Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JLE, Dweck MR, Joshi FR, Gallagher FA, Warburton EA, Bennett MR, Brindle KM, Newby DE, Rudd JH, Davenport AP (2015) Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun 6:7495. CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Kitagawa T, Yamamoto H, Toshimitsu S, Sasaki K, Senoo A, Kubo Y, Tatsugami F, Awai K, Hirokawa Y, Kihara Y (2017) 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 263:385–392PubMedGoogle Scholar
  150. 150.
    Blomberg BA, de Jong PA, Thomassen A, Lam MGE, Vach W, Olsen MH, Mali WPTM, Narula J, Alavi A, Høilund-Carlsen PF (2017) Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study. Eur J Nucl Med Mol Imaging 44:249–258PubMedGoogle Scholar
  151. 151.
    Kietselaer BLJH, Reutelingsperger CPM, Heidendal GAK, Daemen MJAP, Mess WH, Hofstra L, Narula J (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350:1472–1473PubMedGoogle Scholar
  152. 152.
    Kamkar M, Wei L, Gaudet C, Bugden M, Petryk J, Duan Y, Wyatt HM, Wells RG, Marcel YL, Priest ND, Mitchel REJ, Ruddy TD (2016) Evaluation of apoptosis with 99mTc-rhAnnexin V-128 and inflammation with 18F-FDG in a low-dose irradiation model of atherosclerosis in apolipoprotein E-deficient mice. J Nucl Med 57:1784–1791PubMedGoogle Scholar
  153. 153.
    Josephson L, Rudin M (2013) Barriers to clinical translation with diagnostic drugs. J Nucl Med 54:329–332PubMedGoogle Scholar
  154. 154.
    Decristoforo C, Penuelas I, Patt M, Todde S (2017) European regulations for the introduction of novel radiopharmaceuticals in the clinical setting. Q J Nucl Med Mol Imaging 61:135–144PubMedGoogle Scholar
  155. 155.
    Sánchez-Crespo A, Andreo P, Larsson SA (2004) Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 31:44–51PubMedGoogle Scholar
  156. 156.
    Burg S, Dupas A, Stute S, Dieudonné A, Huet P, le Guludec D, Buvat I (2013) Partial volume effect estimation and correction in the aortic vascular wall in PET imaging. Phys Med Biol 58:7527–7542PubMedGoogle Scholar
  157. 157.
    Tarkia M, Saraste A, Stark C et al (2015) [18F]FDG accumulation in early coronary atherosclerotic lesions in pigs. PloS one 10:e0131332. CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Momose A, Takeda T, Itai Y, Hirano K (1996) Phase-contrast X-ray computed tomography for observing biological soft tissues. Nat Med 2:473–475PubMedGoogle Scholar
  159. 159.
    Bonanno G, Coppo S, Modregger P, Pellegrin M, Stuber A, Stampanoni M, Mazzolai L, Stuber M, van Heeswijk RB (2015) Ultra-high-resolution 3D imaging of atherosclerosis in mice with synchrotron differential phase contrast: a proof of concept study. Sci Rep 5:11980. CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Garcia J, Tang T, Louie AY (2015) Nanoparticle-based multimodal PET/MRI probes. Nanomed 10:1343–1359Google Scholar
  161. 161.
    Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110:3146–3195PubMedPubMedCentralGoogle Scholar
  162. 162.
    Solon EG (2007) Autoradiography: high-resolution molecular imaging in pharmaceutical discovery and development. Expert Opin Drug Discov 2:503–514PubMedGoogle Scholar
  163. 163.
    Senders ML, Que X, Cho YS, Yeang C, Groenen H, Fay F, Calcagno C, Meerwaldt AE, Green S, Miu P, Lobatto ME, Reiner T, Fayad ZA, Witztum JL, Mulder WJM, Pérez-Medina C, Tsimikas S (2018) PET/MR imaging of malondialdehyde-acetaldehyde epitopes with a human antibody detects clinically relevant atherothrombosis. J Am Coll Cardiol 71:321–335PubMedPubMedCentralGoogle Scholar
  164. 164.
    Keliher EJ, Ye Y-X, Wojtkiewicz GR, Aguirre AD, Tricot B, Senders ML, Groenen H, Fay F, Perez-Medina C, Calcagno C, Carlucci G, Reiner T, Sun Y, Courties G, Iwamoto Y, Kim HY, Wang C, Chen JW, Swirski FK, Wey HY, Hooker J, Fayad ZA, Mulder WJM, Weissleder R, Nahrendorf M (2017) Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun 8:14064. CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Saraste A, Laitinen I, Weidl E, Wildgruber M, Weber AW, Nekolla SG, Hölzlwimmer G, Esposito I, Walch A, Leppänen P, Lisinen I, Luppa PB, Ylä-Herttuala S, Wester HJ, Knuuti J, Schwaiger M (2012) Diet intervention reduces uptake of αvβ3 integrin-targeted PET tracer 18F-galacto-RGD in mouse atherosclerotic plaques. J Nucl Cardiol 19:775–784PubMedGoogle Scholar
  166. 166.
    Moreno PR, Kini A (2012) Resolution of inflammation, statins, and plaque regression. JACC Cardiovasc Imaging 5:178–181PubMedGoogle Scholar
  167. 167.
    Rominger A, Saam T, Vogl E, Ubleis C, la Fougere C, Forster S, Haug A, Cumming P, Reiser MF, Nikolaou K, Bartenstein P, Hacker M (2010) In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J Nucl Med 51:193–197PubMedGoogle Scholar
  168. 168.
    Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, Bauersachs J, Wollert KC, Bengel FM (2018) Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol 71:263–275PubMedGoogle Scholar
  169. 169.
    van der Valk FM, van Wijk DF, Lobatto ME, Verberne HJ, Storm G, Willems MCM, Legemate DA, Nederveen AJ, Calcagno C, Mani V, Ramachandran S, Paridaans MPM, Otten MJ, Dallinga-Thie GM, Fayad ZA, Nieuwdorp M, Schulte DM, Metselaar JM, Mulder WJM, Stroes ES (2015) Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine Nanotechnol Biol Med 11:1039–1046Google Scholar
  170. 170.
    Lobatto ME, Fayad ZA, Silvera S, Vucic E, Calcagno C, Mani V, Dickson SD, Nicolay K, Banciu M, Schiffelers RM, Metselaar JM, van Bloois L, Wu HS, Fallon JT, Rudd JH, Fuster V, Fisher EA, Storm G, Mulder WJM (2010) Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm 7:2020–2029PubMedPubMedCentralGoogle Scholar
  171. 171.
    Lobatto ME, Calcagno C, Otten MJ, Millon A, Ramachandran S, Paridaans MPM, van der Valk FM, Storm G, Stroes ESG, Fayad ZA, Mulder WJM, Metselaar JM (2015) Pharmaceutical development and preclinical evaluation of a GMP-grade anti-inflammatory nanotherapy. Nanomedicine Nanotechnol Biol Med 11:1133–1140Google Scholar

Copyright information

© World Molecular Imaging Society 2018

Authors and Affiliations

  • Jonathan Vigne
    • 1
  • James Thackeray
    • 2
  • Jeroen Essers
    • 3
  • Marcus Makowski
    • 4
  • Zoreh Varasteh
    • 5
  • Adelina Curaj
    • 6
  • Angelos Karlas
    • 7
  • Emmanuel Canet-Soulas
    • 8
  • Willem Mulder
    • 9
  • Fabian Kiessling
    • 10
  • Michael Schäfers
    • 11
  • René Botnar
    • 12
  • Moritz Wildgruber
    • 13
  • Fabien Hyafil
    • 1
    • 14
    Email author
  • on behalf of the Cardiovascular study group of the European Society of Molecular Imaging
  1. 1.Department of Nuclear Medicine, Bichat University Hospital, AP-HP; INSERM, U-1148, DHU FIREUniversity DiderotParisFrance
  2. 2.Department of Nuclear MedicineHannover Medical SchoolHannoverGermany
  3. 3.Departments of Vascular Surgery, Molecular Genetics, Radiation OncologyErasmus MCRotterdamThe Netherlands
  4. 4.Department of RadiologyCharité–University Medicine BerlinBerlinGermany
  5. 5.Department of Nuclear Medicine, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  6. 6.Institute for Molecular Cardiovascular Research (IMCAR), Institute for Experimental Molecular Imaging (ExMI)University Hospital Aachen, RWTHAachenGermany
  7. 7.Institute for Biological and Medical ImagingHelmholtz Zentrum MünchenOberschleissheimGermany
  8. 8.Laboratoire CarMeN, INSERM U-1060, Lyon/Hospices Civils Lyon, IHU OPERA CardioprotectionUniversité de LyonBronFrance
  9. 9.Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  10. 10.Institute for Experimental Molecular Imaging (ExMI)University Hospital Aachen, RWTHAachenGermany
  11. 11.Department of Nuclear Medicine, European Institute for Molecular Imaging (EIMI)Westfälische Wilhelms-Universität MünsterMünsterGermany
  12. 12.School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
  13. 13.Translational Research Imaging Center, Institut für Klinische RadiologieUniversitätsklinikum MünsterMünsterGermany
  14. 14.Département de Médecine NucléaireCentre Hospitalier Universitaire BichatParisFrance

Personalised recommendations