Skip to main content
Log in

Apparent Diffusion Coefficient is a Useful Biomarker for Monitoring Adipose-Derived Mesenchymal Stem Cell Therapy of Renal Ischemic-Reperfusion Injury

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

This study aimed to investigate the potential of apparent diffusion coefficient (ADC) for monitoring adipose-derived mesenchymal stem cell (ADMSC) therapy of renal ischemic-reperfusion injury (IRI).

Procedures

After baseline magnetic resonance imaging (MRI), 36 Sprague-Dawley rats with bilateral renal IRI were divided equally as groups 1, 2, and 3 (non-treated rats) and groups 4, 5, and 6 (ADMSC-treated rats, with 2 million ADMSCs injected via the tail vein at 6 h after IRI). Groups 1 and 4, 2 and 5, and 3 and 6 were euthanized at days 1, 3, and 7, respectively, after renal MRI. The ratios of ADC at different time points to baseline values in the cortex, outer, and inner stripes of outer medulla (OSOM/ISOM), assessments of monocyte chemoattractant protein-1 (MCP-1), CD68+ cells, tubular cast formation, and degree of fibrosis in three zones over time were compared between the non-treated and ADMSC-treated rats.

Results

Among three zones, the differences in cortical ADC and immunohistochemical changes between the non-treated and ADMSC-treated IRI rats over time were less obvious. Compared with the non-treated rats, the ADMSC-treated rats exhibited significantly higher ADC ratios of OSOM and ISOM at days 1 and 3 corresponding to significantly less MCP-1 staining, CD68+ cells, and tubular casts. From day 3 to day 7, coupling with the decrement of MCP-1 and CD68+ cells in IRI kidneys, the effect of cell density on ADC declined. By day 7, the ADMSC-treated rats showed significantly higher ADC ratios of ISOM than the non-treated IRI rats, indicating better recovery, which could be related to significantly fewer tubular casts and marked amelioration of fibrosis.

Conclusions

We suggest ADC is a useful in vivo biomarker for monitoring ADMSC therapy of renal IRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Liangos O, Wald R, O’Bell JW, Price L, Pereira BJ, Jaber BL (2006) Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin J Am Soc Nephrol 1:43–51

    Article  PubMed  Google Scholar 

  2. Lameire NH, Bagga A, Cruz D, de Maeseneer J, Endre Z, Kellum JA, Liu KD, Mehta RL, Pannu N, van Biesen W, Vanholder R (2013) Acute kidney injury: an increasing global concern. Lancet 382:170–179

    Article  PubMed  Google Scholar 

  3. Hoste EA, Schurgers M (2008) Epidemiology of acute kidney injury: how big is the problem? Crit Care Med 36:S146–S151

    Article  PubMed  Google Scholar 

  4. Bagul A, Frost JH, Drage M (2013) Stem cells and their role in renal ischaemia reperfusion injury. Am J Nephrol 37:16–29

    Article  PubMed  CAS  Google Scholar 

  5. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121:4210–4221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Feng Z, Ting J, Alfonso Z, Strem BM, Fraser JK, Rutenberg J, Kuo HC, Pinkernell K (2010) Fresh and cryopreserved, uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury. Nephrol Dial Transplant 25:3874–3884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Togel F, Weiss K, Yang Y et al (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635

    Article  PubMed  CAS  Google Scholar 

  8. Hu H, Zou C (2017) Mesenchymal stem cells in renal ischemia-reperfusion injury: biological and therapeutic perspectives. Curr Stem Cell Res Ther 12:183–187

    Article  PubMed  CAS  Google Scholar 

  9. Chen Y, Sun C, Lin Y et al (2011) Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med 9:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rowart P, Erpicum P, Detry O et al (2015) Mesenchymal stromal cell therapy in ischemia/reperfusion injury. J Immunol Res 2015:602597

    Article  PubMed  PubMed Central  Google Scholar 

  11. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K (2012) Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 156:785–795

    Article  PubMed  Google Scholar 

  12. Dewitte A, Coquin J, Meyssignac B, Joannès-Boyau O, Fleureau C, Roze H, Ripoche J, Janvier G, Combe C, Ouattara A (2012) Doppler resistive index to reflect regulation of renal vascular tone during sepsis and acute kidney injury. Crit Care 16:R165

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhou HY, Chen TW, Zhang XM (2016) Functional magnetic resonance imaging in acute kidney injury: present status. Biomed Res Int 2016:2027370

    PubMed  PubMed Central  Google Scholar 

  14. Hueper K, Gutberlet M, Rong S, Hartung D, Mengel M, Lu X, Haller H, Wacker F, Meier M, Gueler F (2014) Acute kidney injury: arterial spin labeling to monitor renal perfusion impairment in mice-comparison with histopathologic results and renal function. Radiology 270:117–124

    Article  PubMed  Google Scholar 

  15. Zimmer F, Zöllner FG, Hoeger S, Klotz S, Tsagogiorgas C, Krämer BK, Schad LR (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8:e53849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li LP, Thacker J, Lu J, Franklin T, Zhou Y, Papadopoulou MV, Solomon R, Prasad PV (2014) Efficacy of preventive interventions for iodinated contrast-induced acute kidney injury evaluated by intrarenal oxygenation as an early marker. Investig Radiol 49:647–652

    Article  CAS  Google Scholar 

  17. Thoeny HC, De Keyzer F, Oyen RH et al (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917

    Article  PubMed  Google Scholar 

  18. Taouli B, Thakur RK, Mannelli L, Babb JS, Kim S, Hecht EM, Lee VS, Israel GM (2009) Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 251:398–407

    Article  PubMed  Google Scholar 

  19. Hueper K, Rong S, Gutberlet M, Hartung D, Mengel M, Lu X, Haller H, Wacker F, Meier M, Gueler F (2013) T2 relaxation time and apparent diffusion coefficient for noninvasive assessment of renal pathology after acute kidney injury in mice: comparison with histopathology. Investig Radiol 48:834–842

    Article  CAS  Google Scholar 

  20. Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, Watanabe Y, Takenaka T, Katayama S, Tanaka J, Suzuki H (2011) Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 22:1429–1434

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ko SF, Yip HK, Zhen YY, Lee CC, Lee CC, Huang SJ, Huang CC, Ng SH, Lin JW (2017) Severe bilateral ischemic-reperfusion renal injury: hyperacute and acute changes in apparent diffusion coefficient, T1, and T2 mapping with immunohistochemical correlations. Sci Rep 7:1725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Donizetti-Oliveira C, Semedo P, Burgos-Silva M, Cenedeze MA, Malheiros DMAC, Reis MA, Pacheco-Silva A, Câmara NOS (2012) Adipose tissue-derived stem cell treatment prevents renal disease progression. Cell Transplant 21:1727–1741

    Article  PubMed  Google Scholar 

  23. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, Camussi G (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  PubMed  CAS  Google Scholar 

  24. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schiffl H, Lang SM (2012) Update on biomarkers of acute kidney injury: moving closer to clinical impact? Mol Diagn Ther 16:199–207

    Article  PubMed  CAS  Google Scholar 

  26. Alge JL, Arthur JM (2015) Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol 10:147–155

    Article  PubMed  CAS  Google Scholar 

  27. Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120:c179–c184

    PubMed  Google Scholar 

  28. Mohsenin V (2017) Practical approach to detection and management of acute kidney injury in critically ill patient. J Intensive Care 5:57

    Article  PubMed  PubMed Central  Google Scholar 

  29. Togao O, Doi S, Kuro-o M, Masaki T, Yorioka N, Takahashi M (2010) Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 255:772–780

    Article  PubMed  PubMed Central  Google Scholar 

  30. Melgarejo E, Medina MA, Sánchez-Jiménez F et al (2009) Monocyte chemoattractant protein-1: a key mediator in inflammatory processes. Int J Biochem Cell Biol 41:998–1001

    Article  PubMed  CAS  Google Scholar 

  31. Winter JD, St Lawrence KS, Cheng HL (2011) Quantification of renal perfusion: comparison of arterial spin labeling and dynamic contrast-enhanced MRI. J Magn Reson Imaging 34:608–615

    Article  PubMed  Google Scholar 

  32. Brezis M, Rosen S (1995) Hypoxia of the renal medulla—its implications for disease. N Engl J Med 332:647–655

    Article  PubMed  CAS  Google Scholar 

  33. Chin CL, Wehrli FW, Hwang SN et al (2002) Biexponential diffusion attenuation in the rat spinal cord: computer simulations based on anatomic images of axonal architecture. Magn Reson Med 47:455–460

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Science and Technology, Taiwan (grant number MOST 103-2314-B-182A-066-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheung-Fat Ko.

Ethics declarations

The Institutional Committee on Animal Care, Use and Research approved the experiment (IACUC number: 2013110102). All applicable institutional and/or national guidelines for the care and use of animals were followed.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, SF., Yip, HK., Lee, CC. et al. Apparent Diffusion Coefficient is a Useful Biomarker for Monitoring Adipose-Derived Mesenchymal Stem Cell Therapy of Renal Ischemic-Reperfusion Injury. Mol Imaging Biol 20, 750–760 (2018). https://doi.org/10.1007/s11307-018-1184-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1184-0

Key words

Navigation