Advertisement

Radiomics Analysis of PET and CT Components of PET/CT Imaging Integrated with Clinical Parameters: Application to Prognosis for Nasopharyngeal Carcinoma

  • Wenbing Lv
  • Qingyu Yuan
  • Quanshi WangEmail author
  • Jianhua MaEmail author
  • Qianjin Feng
  • Wufan Chen
  • Arman Rahmim
  • Lijun LuEmail author
Research Article
  • 77 Downloads

Abstract

Purpose

To investigate the prognostic performance of radiomics features, as extracted from positron emission tomography (PET) and X-ray computed tomography (CT) components of baseline 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/CT images and integrated with clinical parameters, in patients with nasopharyngeal carcinoma (NPC).

Procedures

One hundred twenty-eight NPC patients (85 vs. 43 for training vs. validation), containing a subset of 86 patients with local-regional advanced stage, were enrolled. All patients underwent pretreatment PET/CT scans (mean follow-up time 24 ± 14 months). Three thousand two hundred seventy-six radiomics features extracted from PET or CT components and 13 clinical parameters were used to predict progression-free survival (PFS). Univariate analysis with Benjamini–Hochberg false discovery rate (FDR) correction was first used to screen significant features, and redundant features with Spearman’s correlation > 0.8 were further eliminated. Then, seven multivariate models involving PET features and/or CT features and/or clinical parameters (denoted as clinical, PET, CT, clinical + PET, clinical + CT, PET + CT and clinical + PET + CT) were constructed by forward stepwise multivariate Cox regression. Model performance was evaluated by concordance index (C-index).

Results

Sixty patients encountered events (28 recurrences, 17 metastases, and 15 deaths). Six clinical parameters, 3 PET features, and 14 CT features in training cohort and 4 clinical parameters, 10 PET features, and 4 CT features in subset of local-regional advanced stage were significantly associated with PFS. Combining PET and/or CT features with clinical parameters showed equal or higher prognostic performance than models with PET or CT or clinical parameters alone (C-index 0.71–0.76 vs. 0.67–0.73 and 0.62–0.75 vs. 0.54–0.75 for training and validation cohorts, respectively), while the prognostic performance was significantly improved in local-regional advanced cohort (C-index 0.67–0.84 vs. 0.64–0.77, p value 0.001–0.059).

Conclusion

Radiomics features extracted from the PET and CT components of baseline PET/CT images provide complementary prognostic information and improved outcome prediction for NPC patients compared with use of clinical parameters alone.

Key words

Radiomics Clinical parameter Prognosis [18F]FDG PET/CT Nasopharyngeal carcinoma 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China under grants 61628105, 81501541, 81871437, U1708261, and 61471188, the National Key Research and Development Program under grant 2016YFC0104003, the Natural Science Foundation of Guangdong Province under grant 2016A030313577, the Program of Pearl River Young Talents of Science and Technology in Guangzhou under grant 201610010011, the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (Lijun Lu, 2018), and the China Scholarship Council under grant 201808440464.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2018_1304_MOESM1_ESM.pdf (7.4 mb)
ESM 1 (PDF 7589 kb)

References

  1. 1.
    Wei WI, Sham JS (2005) Nasopharyngeal carcinoma. Lancet 365:2041–2054CrossRefGoogle Scholar
  2. 2.
    Lee AWM, Tung SY, Chua DTT, Ngan RKC, Chappell R, Tung R, Siu L, Ng WT, Sze WK, Au GKH, Law SCK, O'Sullivan B, Yau TK, Leung TW, Au JSK, Sze WM, Choi CW, Fung KK, Lau JT, Lau WH (2010) Randomized trial of radiotherapy plus concurrent-adjuvant chemotherapy vs radiotherapy alone for regionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst 102:1188–1198CrossRefGoogle Scholar
  3. 3.
    Caponigro F, Longo F, Ionna F, Perri F (2010) Treatment approaches to nasopharyngeal carcinoma: a review. Anti-Cancer Drug 21:471–477CrossRefGoogle Scholar
  4. 4.
    Chang H, Gao J, Xu BQ, Guo SP, Lu RB, Li G, Huang SM, Han F, Liu ZG, Tao YL, Tu ZW, Chen C, Li XH, Xia YF (2013) Haemoglobin, neutrophil to lymphocyte ratio and platelet count improve prognosis prediction of the TNM staging system in nasopharyngeal carcinoma: development and validation in 3,237 patients from a single institution. Clin Oncol 25:639–646CrossRefGoogle Scholar
  5. 5.
    Wan XB, Wei L, Li H, Dong M, Lin Q, Ma XK, Huang PY, Wen JY, Li X, Chen J, Ruan DY, Lin ZX, Chen ZH, Liu Q, Wu XY, Hong MH (2013) High pretreatment serum lactate dehydrogenase level correlates with disease relapse and predicts an inferior outcome in locally advanced nasopharyngeal carcinoma. Eur J Cancer 49:2356–2364CrossRefGoogle Scholar
  6. 6.
    Zhong L, Li C, Ren Y, Wu D (2017) Prognostic value of 18F-fluorodeoxyglucose PET parameters and inflammation in patients with nasopharyngeal carcinoma. Oncol Lett 14:5004–5012CrossRefGoogle Scholar
  7. 7.
    Wang WY, Twu CW, Chen HH et al (2013) Long-term survival analysis of nasopharyngeal carcinoma by plasma Epstein-Barr virus DNA levels. Cancer-Am Cancer Soc 119:963–970Google Scholar
  8. 8.
    Lee AW, Ma BB, Ng WT, Chan AT (2015) Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol 33:3356–3364CrossRefGoogle Scholar
  9. 9.
    Zhou H, Shen G, Zhang W, Cai H, Zhou Y, Li L (2016) 18F-FDG PET/CT for the diagnosis of residual or recurrent nasopharyngeal carcinoma after radiotherapy: a metaanalysis. J Nucl Med 57:342–347CrossRefGoogle Scholar
  10. 10.
    Chan SC, Chang JT, Lin CY, Ng SH, Wang HM, Liao CT, Chang CJ, Lin SY, Yen TC (2011) Clinical utility of 18F-FDG PET parameters in patients with advanced nasopharyngeal carcinoma: predictive role for different survival endpoints and impact on prognostic stratification. Nucl Med Commun 32:989–996CrossRefGoogle Scholar
  11. 11.
    Chang KP, Tsang NM, Liao CT, Hsu CL, Chung MJ, Lo CW, Chan SC, Ng SH, Wang HM, Yen TC (2012) Prognostic significance of 18F-FDG PET parameters and plasma Epstein-Barr virus DNA load in patients with nasopharyngeal carcinoma. J Nucl Med 53:21–28CrossRefGoogle Scholar
  12. 12.
    O’Connor JP, Rose CJ, Waterton JC et al (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21:249–257CrossRefGoogle Scholar
  13. 13.
    Huang B, Chan T, Kwong DL et al (2012) Nasopharyngeal carcinoma: investigation of intratumoral heterogeneity with FDG PET/CT. AJR Am J Roentgenol 199:169–174CrossRefGoogle Scholar
  14. 14.
    Cheng NM, Fang YH, Chang JT et al (2013) Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med 54:1703–1709CrossRefGoogle Scholar
  15. 15.
    Foley KG, Hills RK, Berthon B, Marshall C, Parkinson C, Lewis WG, Crosby TDL, Spezi E, Roberts SA (2018) Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer. Eur Radiol 28:428–436CrossRefGoogle Scholar
  16. 16.
    Parekh V, Jacobs MA (2016) Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev 1:207–226CrossRefGoogle Scholar
  17. 17.
    Lv W, Yuan Q, Wang Q, Ma J, Jiang J, Yang W, Feng Q, Chen W, Rahmim A, Lu L (2018) Robustness versus disease differentiation when varying parameter settings in radiomics features: application to nasopharyngeal PET/CT. Eur Radiol 28:3245–3254CrossRefGoogle Scholar
  18. 18.
    Lovinfosse P, Polus M, Van Daele D et al (2018) FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging 45:365–375CrossRefGoogle Scholar
  19. 19.
    Chen SW, Shen WC, Lin YC, Chen RY, Hsieh TC, Yen KY, Kao CH (2017) Correlation of pretreatment (18)F-FDG PET tumor textural features with gene expression in pharyngeal cancer and implications for radiotherapy-based treatment outcomes. Eur J Nucl Med Mol Imaging 44:567–580CrossRefGoogle Scholar
  20. 20.
    Yu W, Tang C, Hobbs BP et al (2017) Development and validation of a predictive radiomics model for clinical outcomes in stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys 102:1090–1097CrossRefGoogle Scholar
  21. 21.
    Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RTH, Hermann G, Lambin P, Haibe-Kains B, Mak RH, Aerts HJWL (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350CrossRefGoogle Scholar
  22. 22.
    Kickingereder P, Gotz M, Muschelli J et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22:5765–5771CrossRefGoogle Scholar
  23. 23.
    Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRefGoogle Scholar
  24. 24.
    Ou D, Blanchard P, Rosellini S, Levy A, Nguyen F, Leijenaar RTH, Garberis I, Gorphe P, Bidault F, Ferté C, Robert C, Casiraghi O, Scoazec JY, Lambin P, Temam S, Deutsch E, Tao Y (2017) Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to human papillomavirus status. Oral Oncol 71:150–155CrossRefGoogle Scholar
  25. 25.
    Bogowicz M, Riesterer O, Ikenberg K, Stieb S, Moch H, Studer G, Guckenberger M, Tanadini-Lang S (2017) Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 99:921–928CrossRefGoogle Scholar
  26. 26.
    Leijenaar RT, Carvalho S, Hoebers FJ et al (2015) External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol 54:1423–1429CrossRefGoogle Scholar
  27. 27.
    Law BK, King AD, Bhatia KS et al (2016) Diffusion-weighted imaging of nasopharyngeal carcinoma: can pretreatment DWI predict local failure based on long-term outcome? AJNR Am J Neuroradiol 37:1706–1712CrossRefGoogle Scholar
  28. 28.
    Chan SC, Chang KP, Fang YD et al (2017) Tumor heterogeneity measured on F-18 fluorodeoxyglucose positron emission tomography/computed tomography combined with plasma Epstein-Barr virus load predicts prognosis in patients with primary nasopharyngeal carcinoma. Laryngoscope 127:E22–E28CrossRefGoogle Scholar
  29. 29.
    Zhang B, Tian J, Dong D, Gu D, Dong Y, Zhang L, Lian Z, Liu J, Luo X, Pei S, Mo X, Huang W, Ouyang F, Guo B, Liang L, Chen W, Liang C, Zhang S (2017) Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res 23:4259–4269CrossRefGoogle Scholar
  30. 30.
    Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, el Naqa I (2012) Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol 102:239–245CrossRefGoogle Scholar
  31. 31.
    Yu H, Caldwell C, Mah K, Poon I, Balogh J, MacKenzie R, Khaouam N, Tirona R (2009) Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol Biol Phys 75:618–625CrossRefGoogle Scholar
  32. 32.
    Yu H, Caldwell C, Mah K, Mozeg D (2009) Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging 28:374–383CrossRefGoogle Scholar
  33. 33.
    Anthony GJ, Cunliffe A, Castillo R, Pham N, Guerrero T, Armato SG III, al-Hallaq HA (2017) Incorporation of pre-therapy F-18-FDG uptake data with CT texture features into a radiomics model for radiation pneumonitis diagnosis. Med Phys 44:3686–3694CrossRefGoogle Scholar
  34. 34.
    Ganeshan B, Miles KA, Babikir S, Shortman R, Afaq A, Ardeshna KM, Groves AM, Kayani I (2017) CT-based texture analysis potentially provides prognostic information complementary to interim FDG-PET for patients with Hodgkin’s and aggressive non-Hodgkin’s lymphomas. Eur Radiol 27:1012–1020CrossRefGoogle Scholar
  35. 35.
    Kirienko M, Cozzi L, Antunovic L, Lozza L, Fogliata A, Voulaz E, Rossi A, Chiti A, Sollini M (2018) Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging 45:207–217CrossRefGoogle Scholar
  36. 36.
    Desseroit MC, Visvikis D, Tixier F, et al (2016) Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I-III. Eur J Nucl Med Mol Imaging 43:1477–1485Google Scholar
  37. 37.
    Win T, Miles KA, Janes SM, Ganeshan B, Shastry M, Endozo R, Meagher M, Shortman RI, Wan S, Kayani I, Ell PJ, Groves AM (2013) Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin Cancer Res 19:3591–3599CrossRefGoogle Scholar
  38. 38.
    Boellaard R, Delgado-Bolton R, Oyen WJG, et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol I(42):328–354Google Scholar
  39. 39.
    Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefGoogle Scholar
  40. 40.
    Leijenaar RT, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391–1397CrossRefGoogle Scholar
  41. 41.
    Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A, Chen W (2016) Robustness of radiomic features in [11C]choline and [18F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol 18:935–945CrossRefGoogle Scholar
  42. 42.
    Vallieres M, Freeman CR, Skamene SR, El NI (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496CrossRefGoogle Scholar
  43. 43.
    Zwanenburg A, Leger S, Vallières M, Löck S (2018) Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003v7Google Scholar
  44. 44.
    Wang X, Fritz A, Bent F (1994) Texture features from gray level gap length matrix. IAPR Workshop Mach Vision Appl [abstract] 8: 375–378Google Scholar
  45. 45.
    Sun C, Wee WG (1982) Neighboring gray level dependence matrix for texture classification. Comput Vision Graph 23:341–352Google Scholar
  46. 46.
    Horng MH, Sun YN, Lin XZ (2002) Texture feature coding method for classification of liver sonography. Comput Med Imaging Graph 26:33–42CrossRefGoogle Scholar
  47. 47.
    Rahmim A, Schmidtlein CR, Jackson A, Sheikhbahaei S, Marcus C, Ashrafinia S, Soltani M, Subramaniam RM (2016) A novel metric for quantification of homogeneous and heterogeneous tumors in PET for enhanced clinical outcome prediction. Phys Med Biol 61:227–242CrossRefGoogle Scholar
  48. 48.
    Shinohara RT, Crainiceanu CM, Caffo BS, Reich DS (2011) Longitudinal analysis of spatiotemporal processes: a case study of dynamic contrast-enhanced magnetic resonance imaging in multiple sclerosis. In: Johns Hopkins University, Dept. of Biostatistics Working Papers, Warking Paper 231. Ed. Cooter RD and Edlin AS. Berkeley: Bepress, pp 1–34.Google Scholar
  49. 49.
    Kirienko M, Cozzi L, Rossi A, Voulaz E, Antunovic L, Fogliata A, Chiti A, Sollini M (2018) Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Eur J Nucl Med Mol Imaging 45:1649–1660CrossRefGoogle Scholar
  50. 50.
    Panth KM, Leijenaar RT, Carvalho S et al (2015) Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells. Radiother Oncol 116:462–466CrossRefGoogle Scholar
  51. 51.
    Kickingereder P, Burth S, Wick A, Götz M, Eidel O, Schlemmer HP, Maier-Hein KH, Wick W, Bendszus M, Radbruch A, Bonekamp D (2016) Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280:880–889CrossRefGoogle Scholar
  52. 52.
    Parmar C, Leijenaar RT, Grossmann P et al (2015) Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep 5:11044CrossRefGoogle Scholar
  53. 53.
    Hatt M, Tixier F, Visvikis D, Cheze LRC (2017) Radiomics in PET/CT: more than meets the eye? J Nucl Med 58:365–366CrossRefGoogle Scholar
  54. 54.
    Hatt M, Tixier F, Pierce L, Kinahan PE, le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present... any future? Eur J Nucl Med Mol Imaging 44:151–165CrossRefGoogle Scholar
  55. 55.
    Leijenaar RT, Nalbantov G, Carvalho S et al (2015) The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075CrossRefGoogle Scholar
  56. 56.
    van Velden FHP, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, Hoekstra OS, Smit EF, Boellaard R (2016) Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 18:788–795CrossRefGoogle Scholar
  57. 57.
    Larue R, van Timmeren JE, de Jong E et al (2017) Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol 56:1544–1553CrossRefGoogle Scholar
  58. 58.
    Altazi BA, Zhang GG, Fernandez DC, Montejo ME, Hunt D, Werner J, Biagioli MC, Moros EG (2017) Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. J Appl Clin Med Phys 18:32–48CrossRefGoogle Scholar
  59. 59.
    Razak ARA, Siu LL, Liu F et al (2010) Nasopharyngeal carcinoma: the next challenges. Eur J Cancer 46:1967–1978CrossRefGoogle Scholar
  60. 60.
    Wong AJ, Kanwar A, Mohamed AS, Fuller CD (2016) Radiomics in head and neck cancer: from exploration to application. Transl Cancer Res 5:371–382CrossRefGoogle Scholar
  61. 61.
    Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, Soussan M, Frouin F, Frouin V, Buvat I (2018) A post-reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med 59:1321–1328CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2019

Authors and Affiliations

  1. 1.School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image ProcessingSouthern Medical UniversityGuangzhouChina
  2. 2.Nanfang PET Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
  3. 3.Department of RadiologyJohns Hopkins UniversityBaltimoreUSA
  4. 4.Departments of Radiology and Physics & AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations