Molecular Imaging and Biology

, Volume 20, Issue 2, pp 188–193 | Cite as

PET Imaging of Human Brown Adipose Tissue with the TSPO Tracer [11C]PBR28

  • Chongzhao Ran
  • Daniel S. Albrecht
  • Miriam A. Bredella
  • Jing Yang
  • Jian Yang
  • Steven H. Liang
  • Aaron M. Cypess
  • Marco L. Loggia
  • Nazem Atassi
  • Anna Moore
Brief Article

Abstract

Purpose

Brown adipose tissue (BAT) in adult humans has been recently rediscovered and intensively investigated as a new potential therapeutic target for obesity and type 2 diabetes (T2D). However, reliable assessment of BAT mass in vivo represents a considerable challenge. The purpose of this investigation is to demonstrate for the first time that human BAT depots can be imaged with a translocator protein (TSPO)-specific positron emission tomography (PET) tracer [11C]PBR28 under thermoneutral conditions.

Procedures

In this retrospective analysis, we analyzed the images of three healthy volunteers who underwent PET/magnetic resonance (MR) imaging after injection of 14 m Ci of [11C]PBR28 at room temperature. Thirty-minute static PET images were reconstructed from the data obtained 60–90 min after the injection of the tracer.

Results

[11C]PBR28 uptake in the neck/supraclavicular regions was identified, which was parallel to the known distribution pattern of human BAT depots. These areas co-localized with the areas of hyperintensity and corresponded to fat on T1-weighted MR images. Standardized uptake value (SUV) was used to quantify [11C]PBR28 signal in BAT depots. The average (± SD) SUV(mean) and SUVmax for BAT depots was 2.13 (± 0.33) and 3.19 (± 0.34), respectively, while the average SUV(mean) for muscle and subcutaneous adipose tissue was 0.79 (± 0.1) and 0.18 (± 0.04), respectively.

Conclusions

In this brief article, we provide the first evidence suggesting that [11C]PBR28, a widely available TSPO-specific PET tracer, can be used for imaging human BAT mass under thermoneutral conditions.

Key words

Brown adipose tissue TSPO C-11 PBR28 Metabolic disease Thermoneutral conditions 

Notes

Acknowledgements

We thank China Scholarship Council of Chinese Ministry of Education for support (J.Y. and J.Y.). We also thank Alana W. Ross, B.S. for proofreading this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefPubMedGoogle Scholar
  2. 2.
    Tran TT, Kahn CR (2010) Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nature Rev Endocrinol 6:195–213CrossRefGoogle Scholar
  3. 3.
    Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508CrossRefPubMedGoogle Scholar
  5. 5.
    Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525CrossRefPubMedGoogle Scholar
  6. 6.
    Yoneshiro T, Aita S, Matsushita M et al (2011) Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity 19:1755–1760CrossRefPubMedGoogle Scholar
  7. 7.
    Enerback S (2009) The origins of brown adipose tissue. N Engl J Med 360:2021–2023CrossRefPubMedGoogle Scholar
  8. 8.
    Farmer SR (2009) Obesity: be cool, lose weight. Nature 458:839–840CrossRefPubMedGoogle Scholar
  9. 9.
    Schrauwen P, van Marken Lichtenbelt WD, Spiegelman BM (2015) The future of brown adipose tissues in the treatment of type 2 diabetes. Diabetologia 58:1704–1707CrossRefPubMedGoogle Scholar
  10. 10.
    Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19:1252–1263CrossRefPubMedGoogle Scholar
  11. 11.
    Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schulz TJ, Huang P, Huang TL et al (2013) Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495:379–383CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gnad T, Scheibler S, von Kugelgen I et al (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A receptors. Nature 546:544–548Google Scholar
  14. 14.
    Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cypess AM, White AP, Vernochet C et al (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19:635–639CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bartelt A, Bruns OT, Reimer R et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205CrossRefPubMedGoogle Scholar
  17. 17.
    Rao RR, Long JZ, White JP et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Qiang L, Wang L, Kon N et al (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150:620–632CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wu J, Bostrom P, Sparks LM et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Whittle AJ, Carobbio S, Martins L et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149:871–885CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cypess AM, Haft CR, Laughlin MR, Hu HH (2014) Brown fat in humans: consensus points and experimental guidelines. Cell Metab 20:408–415CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sampath SC, Bredella MA, Cypess AM, Torriani M (2016) Imaging of brown adipose tissue: state of the art. Radiology 280:4–19CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen KY, Cypess AM, Laughlin MR et al (2016) Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab 24:210–222CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112:35–39PubMedPubMedCentralGoogle Scholar
  25. 25.
    Nakayama A, Bianco AC, Zhang CY et al (2003) Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging. Mol Imaging 2:37–49CrossRefPubMedGoogle Scholar
  26. 26.
    Azhdarinia A, Daquinag AC, Tseng C et al (2013) A peptide probe for targeted brown adipose tissue imaging. Nature Comm 4:2472CrossRefGoogle Scholar
  27. 27.
    Rice DR, White AG, Leevy WM, Smith BD (2015) Fluorescence imaging of interscapular brown adipose tissue in living mice. J Mater Chem B 3:1979–1989CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wu C, Cheng W, Xing H et al (2011) Brown adipose tissue can be activated or inhibited within an hour before 18F-FDG injection: a preliminary study with microPET. J Biomed Biotechnol 2011:159834PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hu HH, Smith DL Jr, Nayak KS et al (2010) Identification of brown adipose tissue in mice with fat-water IDEAL-MRI. J Magn Reson Imag 31:1195–1202CrossRefGoogle Scholar
  30. 30.
    Chen YI, Cypess AM, Sass CA et al (2012) Anatomical and functional assessment of brown adipose Ttissue by magnetic resonance imaging. Obesity 20:1519–1526CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Khanna A, Branca RT (2012) Detecting brown adipose tissue activity with BOLD MRI in mice. Magn Reson Med e 68:1285–1290CrossRefGoogle Scholar
  32. 32.
    Peng XG, Ju S, Fang F et al (2013) Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy. Amer J Physiol Endocrinol Metabol 304:E160–E167CrossRefGoogle Scholar
  33. 33.
    Branca RT, He T, Zhang L et al (2014) Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI. Proc Natl Acad Sci U S A 111:18001–18006CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Madar I, Isoda T, Finley P, Angle J, Wahl R (2011) 18F-fluorobenzyl triphenyl phosphonium: a noninvasive sensor of brown adipose tissue thermogenesis. J Nucl Med 52:808–814CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Eriksson O, Mikkola K, Espes D et al (2015) The cannabinoid receptor-1 is an imaging biomarker of brown adipose Tissue. J Nucl Med 56:1937–1941CrossRefPubMedGoogle Scholar
  36. 36.
    Hwang JJ, Yeckel CW, Gallezot JD et al (2015) Imaging human brown adipose tissue under room temperature conditions with (11)C-MRB, a selective norepinephrine transporter PET ligand. Metabolism 64:747–755CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lin SF, Fan X, Yeckel CW et al (2012) Ex vivo and in vivo evaluation of the norepinephrine transporter ligand [11C]MRB for brown adipose tissue imaging. Nucl Med Biol 39:1081–1086CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang X, Tian Y, Zhang H et al (2015) Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning. Sci Rep 5:13116CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang X, Kuo C, Moore A, Ran C (2013) In vivo optical imaging of interscapular brown adipose tissue with 18F-FDG via Cerenkov luminescence imaging. PLoS One 8:e62007CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yang J, Yang J, Moore A, Liang S, Ran C (2017) Synthesis-free PET imaging of brown adipose tissue and TSPO via combination of disulfiram and 64CuCl2. Sci Rep 7(1):8298Google Scholar
  41. 41.
    Woods MJ, Williams DC (1996) Multiple forms and locations for the peripheral-type benzodiazepine receptor. Biochem Pharmacol 52:1805–1814CrossRefPubMedGoogle Scholar
  42. 42.
    Li F, Liu J, Garavito RM, Ferguson-Miller S (2015) Evolving understanding of translocator protein 18 kDa (TSPO). Pharmacol Res 99:404–409CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Loggia ML, Chonde DB, Akeju O et al (2015) Evidence for brain glial activation in chronic pain patients. Brain 138:604–615CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Albrecht DS, Granziera C, Hooker JM, Loggia ML (2016) In vivo imaging of human neuroinflammation. ACS Chem Neurosci 7:470–483CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dupont AC, Largeau B, Santiago Ribeiro MJ et al (2017) Translocator protein-18 kDa (TSPO) positron emission tomography (PET) imaging and its clinical impact in neurodegenerative diseases. Int J Mol Sci.  https://doi.org/10.3390/ijms18040785
  46. 46.
    Vivash L, O’Brien TJ (2016) Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med 57:165–168CrossRefPubMedGoogle Scholar
  47. 47.
    Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cagnin A, Kassiou M, Meikle SR, Banati RB (2007) Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 4:443–452CrossRefPubMedGoogle Scholar
  49. 49.
    Herranz E, Gianni C, Louapre C et al (2016) Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann Neurol 80:776–790CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zurcher NR, Loggia ML, Lawson R et al (2015) Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [11C]-PBR28. NeuroImage Clinical 7:409–414CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kreisl WC, Lyoo CH, Liow JS et al (2017) Distinct patterns of increased translocator protein in posterior cortical atrophy and amnestic Alzheimer’s disease. Neurobiol Aging 51:132–140CrossRefPubMedGoogle Scholar
  52. 52.
    Thompson MM, Manning HC, Ellacott KL (2013) Translocator protein 18 kDa (TSPO) is regulated in white and brown adipose tissue by obesity. PLoS One 8:e79980CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Campioli E, Carnevale G, Avallone R et al (2011) Morphological and receptorial changes in the epididymal adipose tissue of rats subjected to a stressful stimulus. Obesity 19:703–708CrossRefPubMedGoogle Scholar
  54. 54.
    Wang L, Cheng R, Fujinaga M et al (2017) A facile radiolabeling of [18F]FDPA via spirocyclic iodonium ylides: preliminary PET imaging studies in preclinical models of neuroinflammation. J Med Chem 60:5222–5227CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Imaizumi M, Kim HJ, Zoghbi SS et al (2007) PET imaging with [11C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neurosci Lett 411:200–205CrossRefPubMedGoogle Scholar
  56. 56.
    Cypess AM, Kahn CR (2010) The role and importance of brown adipose tissue in energy homeostasis. Curr Opin Pediatr 22:478–484CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gunawardana SC, Piston DW (2012) Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 61:674–682CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Veronese M, Reis Marques T, Bloomfield PS, et al. (2017) Kinetic modelling of [11C]PBR28 for 18 kDa translocator protein PET data: a validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metabol.  https://doi.org/10.1177/0271678X17712388

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  • Chongzhao Ran
    • 1
  • Daniel S. Albrecht
    • 2
    • 3
  • Miriam A. Bredella
    • 4
  • Jing Yang
    • 1
  • Jian Yang
    • 1
  • Steven H. Liang
    • 5
  • Aaron M. Cypess
    • 6
  • Marco L. Loggia
    • 2
  • Nazem Atassi
    • 7
  • Anna Moore
    • 1
  1. 1.Molecular Imaging Laboratory, Athinoula. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Athinoula. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Division of Nuclear Medicine and Molecular Imaging & Gordon Center for Medical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  4. 4.Division of Musculoskeletal Imaging and InterventionMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  5. 5.Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  6. 6.Diabetes, Endocrinology, and Obesity BranchNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA
  7. 7.Neurological Clinical Research Institute (NCRI), Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations