Skip to main content

Advertisement

Log in

Standardization of Small Animal Imaging—Current Status and Future Prospects

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

The benefit of small animal imaging is directly linked to the validity and reliability of the collected data. If the data (regardless of the modality used) are not reproducible and/or reliable, then the outcome of the data is rather questionable. Therefore, standardization of the use of small animal imaging equipment, as well as of animal handling in general, is of paramount importance. In a recent paper, guidance for efficient small animal imaging quality control was offered and discussed, among others, the use of phantoms in setting up a quality control program (Osborne et al. 2016). The same phantoms can be used to standardize image quality parameters for multi-center studies or multi-scanners within center studies. In animal experiments, the additional complexity due to animal handling needs to be addressed to ensure standardized imaging procedures. In this review, we will address the current status of standardization in preclinical imaging, as well as potential benefits from increased levels of standardization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yao R, Lecomte R, Crawford ES (2012) Small-animal PET: what is it, and why do we need it? J Nucl Med Technol 40:157–165

    Article  PubMed  Google Scholar 

  2. Woolfenden JM, Liu Z (2005) Biomedical significance of small-animal imaging. In: Kupinski MA, Barrett HH (eds) Small-animal SPECT imaging. Boston, Springer, pp 1–8

    Google Scholar 

  3. Mariani G, Bruselli L, Kuwert T et al (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37:1959–1985

    Article  PubMed  Google Scholar 

  4. Kuntner C, Stout D (2014) Quantitative preclinical PET imaging: opportunities and challenges. Front Phys 2:12

    Article  Google Scholar 

  5. Lopci E, Nanni C, Castellucci P et al (2010) Imaging with non-FDG PET tracers: outlook for current clinical applications. Insights Imaging 1:373–385

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schmitz J, Schwab J, Schwenck J et al (2016) Decoding intratumoral heterogeneity of breast cancer by multiparametric in vivo imaging: a translational study. Cancer Res 76:5512–5522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pagani E, Bizzi A, Di Salle F et al (2008) Basic concepts of advanced MRI techniques. Neurol Sci 29(Suppl 3):290–295

    Article  PubMed  Google Scholar 

  8. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory,experimental design and data analysis - a technical review. NMR Biomed 15:456–467

  9. Brovko L (2010) Bioluminescence and fluorescence for in vivo imaging. SPIE Press, Bellingham

    Book  Google Scholar 

  10. Roda A (2011) Chemiluminescence and bioluminescence: past, present and future. Royal Society of Chemistry, Cambridge

    Google Scholar 

  11. Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14:71–79

    Article  PubMed  CAS  Google Scholar 

  12. Dhawan AP, D'Alessandro B, Fu X (2010) Optical imaging modalities for biomedical applications. IEEE Rev Biomed Eng 3:69–92

    Article  PubMed  Google Scholar 

  13. Buzug TM (2004) Einleitung. In Einführung in die Computertomographie: Mathematisch-physikalische Grundlagen der Bildrekonstruktion. Berlin: Springer Berlin Heidelberg, pp 1–10

  14. Liguori C, Frauenfelder G, Massaroni C et al (2015) Emerging clinical applications of computed tomography. Med Devices (Auckl) 8:265–278

    Google Scholar 

  15. Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:S34–S39

    Article  Google Scholar 

  16. Paulus MJ, Gleason SS, Easterly ME, Foltz CJ (2001) A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. Lab Anim 30:36–45

    CAS  Google Scholar 

  17. Begley CG, Ioannidis JP (2015) Reproducibility in science: improving the standard for basic and preclinical research. Circ Res 116:116–126

    Article  PubMed  CAS  Google Scholar 

  18. Macleod MR, Michie S, Roberts I et al (2014) Biomedical research: increasing value, reducing waste. Lancet 383:101–104

    Article  PubMed  Google Scholar 

  19. Al-Shahi Salman R, Beller E, Kagan J et al (2014) Increasing value and reducing waste in biomedical research regulation and management. Lancet 383:176–185

    Article  PubMed  Google Scholar 

  20. O’Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186

    Article  PubMed  CAS  Google Scholar 

  21. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46:1016–1022

    Article  PubMed  CAS  Google Scholar 

  22. Parfitt AM, Drezner MK, Glorieux FH et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  23. Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486

    Article  PubMed  Google Scholar 

  25. Osborne DR, Kuntner C, Berr S, Stout D (2017) Guidance for efficient small animal imaging quality control. Mol Imaging Biol 19:485–498

    Article  PubMed  Google Scholar 

  26. Suomalainen A, Kiljunen T, Kaser Y et al (2009) Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol 38:367–378

    Article  PubMed  CAS  Google Scholar 

  27. Song WY, Kamath S, Ozawa S et al (2008) A dose comparison study between XVI and OBI CBCT systems. Med Phys 35:480–486

    Article  PubMed  Google Scholar 

  28. Willekens I, Buls N, Lahoutte T et al (2010) Evaluation of the radiation dose in micro-CT with optimization of the scan protocol. Contrast Media Mol Imaging 5:201–207

    Article  PubMed  CAS  Google Scholar 

  29. Miyahara N, Kokubo T, Hara Y et al (2016) Evaluation of X-ray doses and their corresponding biological effects on experimental animals in cone-beam micro-CT scans (R-mCT2). Radiol Phys Technol 9:60–68

    Article  PubMed  Google Scholar 

  30. Osborne DR, Yan S, Stuckey A et al (2012) Characterization of X-ray dose in murine animals using microCT, a new low-dose detector and nanoDot dosimeters. PLoS One 7:e49936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Staude A, Goebbels J (2011) Determining the spatial resolution in computed tomography—comparison of MTF and line-pair structures. In International symposium on digital industrial radiology and computed tomography (Proceedings). pp 1-9

  32. Fahey FH (2002) Data acquisition in PET imaging. J Nucl Med Technol 30:39–49

    PubMed  Google Scholar 

  33. Bailey DL, Karp JS, Surti S (2005) Physics and instrumentation in PET. In: Bailey DL, Townsend DW, Valk PE, Maisey MN (eds) Positron emission tomography: basic sciences. Springer, London, pp 13–39

    Chapter  Google Scholar 

  34. Tai YC, Laforest R (2005) Instrumentation aspects of animal PET. Annu Rev Biomed Eng 7:255–285

    Article  PubMed  CAS  Google Scholar 

  35. Peremans K, Cornelissen B, Van Den Bossche B et al (2005) A review of small animal imaging planar and pinhole spect Gamma camera imaging. Vet Radiol Ultrasound 46:162–170

    Article  PubMed  Google Scholar 

  36. Wirrwar A, Schramm N, Vosberg H, Muller-Gartner HW (2001) High resolution SPECT in small animal research. Rev Neurosci 12:187–193

    Article  PubMed  CAS  Google Scholar 

  37. Meikle SR, Kench P, Kassiou M, Banati RB (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50:R45–61

  38. Franc BL, Acton PD, Mari C, Hasegawa BH (2008) Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med 49:1651–1663

  39. Hutchins GD, Miller MA, Soon VC, Receveur T (2008) Small animal PET imaging. ILAR J 49:54–65

    Article  PubMed  CAS  Google Scholar 

  40. Constantinescu CC, Mukherjee J (2009) Performance evaluation of an Inveon PET preclinical scanner. Phys Med Biol 54:2885–2899

    Article  PubMed  PubMed Central  Google Scholar 

  41. Herrmann K, Dahlbom M, Nathanson D et al (2013) Evaluation of the Genisys4, a bench-top preclinical PET scanner. J Nucl Med 54:1162–1167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Goertzen AL, Bao Q, Bergeron M et al (2012) NEMA NU 4-2008 comparison of preclinical PET imaging systems. J Nucl Med 53:1300–1309

    Article  PubMed  PubMed Central  Google Scholar 

  43. Deleye S, Van Holen R, Verhaeghe J, Vandenberghe S, Stroobants S, Staelens S (2013) Performance evaluation of small-animal multipinhole muSPECT scanners for mouse imaging. Eur J Nucl Med Mol Imaging 40:744–758

  44. Sanchez F, Orero A, Soriano A, et al. (2013) ALBIRA: a small animal PETSPECTCT imaging system. Med Phys 40:051906

  45. Boisson F, Zahra D, Parmar A, et al. (2013) Imaging capabilities of the Inveon SPECT system using single-and multipinhole collimators. J Nucl Med 54:1833–1840

  46. Boellaard R, O’Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200

    Article  PubMed  Google Scholar 

  47. Boellaard R, Delgado-Bolton R, Oyen WJ et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42:328–354

    Article  PubMed  CAS  Google Scholar 

  48. Aide N, Lasnon C, Veit-Haibach P et al (2017) EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging 44:17–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Landis SC, Amara SG, Asadullah K et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Anderson JA, Eijkholt M, Illes J (2013) Ethical reproducibility: towards transparent reporting in biomedical research. Nat Methods 10:843–845

    Article  PubMed  CAS  Google Scholar 

  52. Mannheim JG, Schmid AM, Pichler BJ (2017) Influence of Co-57 and CT transmission measurements on the quantification accuracy and partial volume effect of a small animal PET scanner. Mol Imaging Biol. https://doi.org/10.1007/s11307-017-1074-x

  53. Mannheim JG, Judenhofer MS, Schmid A et al (2012) Quantification accuracy and partial volume effect in dependence of the attenuation correction of a state-of-the-art small animal PET scanner. Phys Med Biol 57:3981–3993

    Article  PubMed  Google Scholar 

  54. Versuchstierkunde GfTV Empfehlung zur Substanzapplikation bei Versuchstieren. http://www.gv-solas.de/fileadmin/user_upload/pdf_publikation/Injektionsvol_August_2010.pdf (Accessed 21 Jan 2015)

  55. Hume SP, Gunn RN, Jones T (1998) Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med 25:173–176

    Article  PubMed  CAS  Google Scholar 

  56. Stout D, Berr SS, LeBlanc A et al (2013) Guidance for methods descriptions used in preclinical imaging papers. Mol Imaging 12:1–15

    Article  PubMed  Google Scholar 

  57. Jezzard P, Song AW (1996) Technical foundations and pitfalls of clinical fMRI. NeuroImage 4:S63–S75

    Article  PubMed  CAS  Google Scholar 

  58. Oz G, Alger JR, Barker PB et al (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270:658–679

    Article  PubMed  PubMed Central  Google Scholar 

  59. Currie S, Hoggard N, Craven IJ et al (2013) Understanding MRI: basic MR physics for physicians. Postgrad Med J 89:209–223

    Article  PubMed  Google Scholar 

  60. Plewes DB, Kucharczyk W (2012) Physics of MRI: a primer. J Magn Reson Imaging 35:1038–1054

    Article  PubMed  Google Scholar 

  61. Mansfield P, Grannell PK (1973) NMR ‘diffraction’ in solids? J Phys C Solid State Phys 6:L422

    Article  CAS  Google Scholar 

  62. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  63. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  64. Bloch F (1946) Nuclear induction. Phys Rev 70:460–474

    Article  CAS  Google Scholar 

  65. Marzola P, Osculati F, Sbarbati A (2003) High field MRI in preclinical research. Eur J Radiol 48:165–170

    Article  PubMed  Google Scholar 

  66. Sharma R (2009) Microimaging of hairless rat skin by magnetic resonance at 900 MHz. Magn Reson Imaging 27:240–255

    Article  PubMed  Google Scholar 

  67. Nagy K, Toth M, Major P et al (2013) Performance evaluation of the small-animal nanoScan PET/MRI system. J Nucl Med 54:1825–1832

    Article  PubMed  Google Scholar 

  68. Wu Y, Catana C, Farrell R et al (2009) PET performance evaluation of an MR-compatible PET insert. IEEE Trans Nucl Sci 56:574–580

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hawkes RC, Fryer TD, Siegel S et al (2010) Preliminary evaluation of a combined microPET-MR system. Technol Cancer Res Treat 9:53–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ahrens ET, Narasimhan PT, Nakada T, Jacobs RE (2002) Small animal neuroimaging using magnetic resonance microscopy. Prog Nucl Magn Reson Spectrosc 40:275–306

    Article  CAS  Google Scholar 

  71. Friedman L, Glover GH, The FBIRN Consort (2006) Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. NeuroImage 33:471–481

    Article  PubMed  Google Scholar 

  72. Ewers M, Teipel SJ, Dietrich O et al (2006) Multicenter assessment of reliability of cranial MRI. Neurobiol Aging 27:1051–1059

    Article  PubMed  CAS  Google Scholar 

  73. Teipel S, Ewers M, Dietrich O et al (2006) Reliability of multicenter magnetic resonance imaging. Results of a phantom test and in vivo measurements by the German Dementia Competence Network. Nervenarzt 77(1086–1092):1094–1085

    Google Scholar 

  74. Schnack HG, van Haren NE, Hulshoff Pol HE et al (2004) Reliability of brain volumes from multicenter MRI acquisition: a calibration study. Hum Brain Mapp 22:312–320

    Article  PubMed  Google Scholar 

  75. Stocker T, Schneider F, Klein M et al (2005) Automated quality assurance routines for fMRI data applied to a multicenter study. Hum Brain Mapp 25:237–246

    Article  PubMed  Google Scholar 

  76. Zou KH, Greve DN, Wang M et al (2005) Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network. Radiology 237:781–789

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chang L, Lee PL, Yiannoutsos CT et al (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. NeuroImage 23:1336–1347

    Article  PubMed  CAS  Google Scholar 

  78. Mutsaerts HJMM, van Osch MJP, Zelaya FO et al (2015) Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: Implications for multi-center studies. NeuroImage 113:143–152

    Article  PubMed  Google Scholar 

  79. van der Graaf M, Julia-Sape M, Howe FA et al (2008) MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR Biomed 21:148–158

    Article  PubMed  CAS  Google Scholar 

  80. Brueggen K, Grothe MJ, Dyrba M et al (2017) The European DTI Study on Dementia—a multicenter DTI and MRI study on Alzheimer’s disease and mild cognitive impairment. NeuroImage 144:305–308

    Article  PubMed  Google Scholar 

  81. Jovicich J, Czanner S, Greve D et al (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage 30:436–443

    Article  PubMed  Google Scholar 

  82. Littmann A, Guehring J, Buechel C, Stiehl HS (2006) Acquisition-related morphological variability in structural MRI. Acad Radiol 13:1055–1061

    Article  PubMed  Google Scholar 

  83. Jonckers E, Shah D, Hamaide J et al (2015) The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol 6:231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878

    Article  PubMed  CAS  Google Scholar 

  85. Uludağ K, Uğurbil K, Berliner L (2015) fMRI: from nuclear spins to brain functions. Springer

  86. Jenkins BG (2012) Pharmacologic magnetic resonance imaging (phMRI): imaging drug action in the brain. NeuroImage 62:1072–1085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Inoue T, Majid T, Pautler RG (2011) Manganese enhanced MRI (MEMRI): neurophysiological applications. Rev Neurosci 22:675–694

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen JE, Glover GH (2015) Functional magnetic resonance imaging methods. Neuropsychol Rev 25:289–313

    Article  PubMed  PubMed Central  Google Scholar 

  89. Van der Linden A, Van Camp N, Ramos-Cabrer P, Hoehn M (2007) Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR Biomed 20:522–545

    Article  PubMed  CAS  Google Scholar 

  90. Detre JA, Wang JJ, Wang Z, Rao HY (2009) Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Curr Opin Neurol 22:348–355

    Article  PubMed  Google Scholar 

  91. Ge YL, Law M, Johnson G et al (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. Am J Neuroradiol 26:1539–1547

    PubMed  Google Scholar 

  92. Yang S, Law M, Zagzag D et al (2003) Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. Am J Neuroradiol 24:1554–1559

    PubMed  Google Scholar 

  93. Haynes JD (2015) A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron 87:257–270

    Article  PubMed  CAS  Google Scholar 

  94. Thomas ML, Brown GG, Thompson WK et al (2013) An application of item response theory to fMRI data: prospects and pitfalls. Psychiatry Res 212:167–174

    Article  PubMed  PubMed Central  Google Scholar 

  95. Davis T, Poldrack RA (2013) Measuring neural representations with fMRI: practices and pitfalls. Ann N Y Acad Sci 1296:108–134

    Article  PubMed  Google Scholar 

  96. Eke A, Herman P, Sanganahalli BG et al (2012) Pitfalls in fractal time series analysis: fMRI BOLD as an exemplary case. Front Physiol 3:417

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chen Z, Calhoun VD (2011) Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect. J Neurosci Methods 199:363–369

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:8

    PubMed  PubMed Central  Google Scholar 

  99. Haller S, Bartsch AJ (2009) Pitfalls in FMRI. Eur Radiol 19:2689–2706

    Article  PubMed  Google Scholar 

  100. Amaro E Jr, Barker GJ (2006) Study design in fMRI: basic principles. Brain Cogn 60:220–232

    Article  PubMed  Google Scholar 

  101. Schroeter A, Schlegel F, Seuwen A et al (2014) Specificity of stimulus-evoked fMRI responses in the mouse: the influence of systemic physiological changes associated with innocuous stimulation under four different anesthetics. NeuroImage 94:372–384

    Article  PubMed  CAS  Google Scholar 

  102. Ramsey NF, Hoogduin H, Jansma JM (2002) Functional MRI experiments: acquisition, analysis and interpretation of data. Eur Neuropsychopharmacol 12:517–526

    Article  PubMed  CAS  Google Scholar 

  103. Peeters R, Sunaert S (2015) Clinical BOLD fMRI and DTI: artifacts, tips, and tricks. In Clinical functional MRI: presurgical functional neuroimaging. Ed. Stippich C. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 313–336

  104. Silva AC, Lee JH, Aoki L, Koretsky AR (2004) Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed 17:532–543

    Article  PubMed  CAS  Google Scholar 

  105. Massaad CA, Pautler RG (2011) Manganese-enhanced magnetic resonance imaging (MEMRI). Methods Mol Biol 711:145–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Chung MK, Worsley KJ, Robbins S et al (2003) Deformation-based surface morphometry applied to gray matter deformation. NeuroImage 18:198–213

    Article  PubMed  Google Scholar 

  107. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  108. Symms M, Jager H, Schmierer K, Yousry T (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75:1235–1244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Haacke EM, Mittal S, Wu Z et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. Am J Neuroradiol 30:19–30

    Article  PubMed  CAS  Google Scholar 

  110. Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol 30:232–252

    Article  PubMed  CAS  Google Scholar 

  111. Muskulus M, Scheenstra AEH, Braakman N et al (2009) Prospects for early detection of Alzheimers disease from serial MR images in transgenic mouse models. Curr Alzheimer Res 6:503–518

    Article  PubMed  CAS  Google Scholar 

  112. Hartung MP, Grist TM, Francois CJ (2011) Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson 13:19

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hajnal JV, Bryant DJ, Kasuboski L et al (1992) Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 16:841–844

    Article  PubMed  CAS  Google Scholar 

  114. Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820

    Article  PubMed  Google Scholar 

  115. Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do's and don’ts of diffusion MRI. NeuroImage 73:239–254

    Article  PubMed  Google Scholar 

  116. Soares JM, Marques P, Alves V, Sousa N (2013) A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  117. Crawley AP, Henkelman RM (1987) Errors in T2 estimation using multislice multiple-echo imaging. Magn Reson Med 4:34–47

    Article  PubMed  CAS  Google Scholar 

  118. Hu X, Norris DG (2004) Advances in high-field magnetic resonance imaging. Annu Rev Biomed Eng 6:157–184

    Article  PubMed  CAS  Google Scholar 

  119. Majumdar S, Orphanoudakis SC, Gmitro A et al (1986) Errors in the measurements of T2 using multiple-echo MRI techniques. II. Effects of static field inhomogeneity. Magn Reson Med 3:562–574

    Article  PubMed  CAS  Google Scholar 

  120. Majumdar S, Orphanoudakis SC, Gmitro A et al (1986) Errors in the measurements of T2 using multiple-echo MRI techniques. I. Effects of radiofrequency pulse imperfections. Magn Reson Med 3:397–417

    Article  PubMed  CAS  Google Scholar 

  121. Santyr GE (1993) Magnetization transfer effects in multislice MR imaging. Magn Reson Imaging 11:521–532

    Article  PubMed  CAS  Google Scholar 

  122. Anderson CM, Saloner D, Tsuruda JS et al (1990) Artifacts in maximum-intensity-projection display of MR angiograms. AJR Am J Roentgenol 154:623–629

    Article  PubMed  CAS  Google Scholar 

  123. Vosshenrich R, Reimer P (2002) Artifacts and limitations. In: Arlart IP, Bongartz GM, Marchal G (eds) Magnetic resonance angiography. Springer, Berlin, pp 167–180

    Chapter  Google Scholar 

  124. Drost DJ, Riddle WR, Clarke GD, Group AMT (2002) Proton magnetic resonance spectroscopy in the brain: report of AAPM MR Task Group #9. Med Phys 29:2177–2197

    Article  PubMed  CAS  Google Scholar 

  125. Duarte JM, Lei H, Mlynarik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. NeuroImage 61:342–362

    Article  PubMed  CAS  Google Scholar 

  126. Kara F, Braakman N, van Buchem MA et al (2011) Prospects of magnetic resonance spectroscopy in mouse models of Alzheimer’s disease. Curr Med Imaging Rev 7:80–87

    Article  CAS  Google Scholar 

  127. De Graaf RA (2007) Single volume localization and water suppression. In: In vivo NMR spectroscopy principles and techniques. Chichester, West Sussex, England; Hoboken: Wiley, pp 297–348

  128. Hurd RE (2009) Artifacts and pitfalls in MR spectroscopy. In: Waldman AD, Gillard JH, Barker PB (eds) Clinical MR neuroimaging: physiological and functional techniques. Cambridge University Press, Cambridge, pp 30–43

    Chapter  Google Scholar 

  129. Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381

    Article  PubMed  CAS  Google Scholar 

  130. Vanhoutte G, Verhoye M, Van der Linden A (2006) Changing body temperature affects the T 2* signal in the rat brain and reveals hypothalamic activity. Magn Reson Med 55:1006–1012

    Article  PubMed  CAS  Google Scholar 

  131. Friedman L, Glover GH (2006) Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 23:827–839

    Article  PubMed  Google Scholar 

  132. Price RR, Axel L, Morgan T et al (1990) Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys 17:287–295

    Article  PubMed  CAS  Google Scholar 

  133. Davids M, Zöllner FG, Ruttorf M et al (2014) Fully-automated quality assurance in multi-center studies using MRI phantom measurements. Magn Reson Imaging 32:771–780

    Article  PubMed  Google Scholar 

  134. Weisskoff RM (1996) Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magn Reson Med 36:643–645

    Article  PubMed  CAS  Google Scholar 

  135. Guilfoyle DN, Gerum SV, Sanchez JL et al (2013) Functional connectivity fMRI in mouse brain at 7T using isoflurane. J Neurosci Methods 214:144–148

    Article  PubMed  PubMed Central  Google Scholar 

  136. Glover GH, Mueller BA, Turner JA et al (2012) Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. J Magn Reson Imaging 36:39–54

    Article  PubMed  PubMed Central  Google Scholar 

  137. Glover G (2005) FBIRN Stability phantom QA procedures

  138. Teuho J, Saunavaara V, Teras M (2015) Long-term stability of the MR system of the Philips Ingenuity TF. Eur J Nucl Med Mol Imaging Phys 2:A22

    Google Scholar 

  139. Fu L, Fonov V, Pike B, et al. (2006) Automated analysis of multi-site MRI phantom data for the NIHPD project. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1–6, 2006 Proceedings, Part II, Eds. Larsen R, Nielsen M, Sporring J. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 144–151

  140. Chen CC, Wan YL, Wai YY, Liu HL (2004) Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results. J Digit Imaging 17:279–284

    Article  PubMed  PubMed Central  Google Scholar 

  141. O'Callaghan J, Wells J, Richardson S et al (2014) Is your system calibrated? MRI gradient system calibration for pre-clinical, high-resolution imaging. PLoS One 9:e96568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lee YC, Fullerton GD, Baiu C et al (2011) Preclinical multimodality phantom design for quality assurance of tumor size measurement. BMC Med Phys 11:1

    Article  PubMed  PubMed Central  Google Scholar 

  143. Price RA, JG. Clark, et al. (2015) Magnetic resonance imaging quality control manual. ACR American College of Radiology

  144. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185

    Article  Google Scholar 

  145. Gremse F, Theek B, Kunjachan S et al (2014) Absorption reconstruction improves biodistribution assessment of fluorescent nanoprobes using hybrid fluorescence-mediated tomography. Theranostics 4:960–971

    Article  PubMed  PubMed Central  Google Scholar 

  146. Niwa K, Ichino Y, Kumata S et al (2010) Quantum yields and kinetics of the firefly bioluminescence reaction of beetle luciferases. Photochem Photobiol 86:1046–1049

    Article  PubMed  CAS  Google Scholar 

  147. Klose AD, Beattie BJ, Dehghani H et al (2010) In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration. Med Phys 37:329–338

    Article  PubMed  Google Scholar 

  148. Baeten J, Niedre M, Dunham J, Ntziachristos V (2007) Development of fluorescent materials for diffuse fluorescence tomography standards and phantoms. Opt Express 15:8681–8694

    Article  PubMed  CAS  Google Scholar 

  149. Gremse F, Doleschel D, Zafarnia S, et al. (2015) Hybrid microCT-FMT imaging and image analysis. J Vis Exp e52770

  150. Leblond F, Davis SC, Valdes PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B 98:77–94

    Article  PubMed  CAS  Google Scholar 

  151. Contag CH, Spilman SD, Contag PR et al (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66:523–531

    Article  PubMed  CAS  Google Scholar 

  152. Evans MS, Chaurette JP, Adams ST Jr et al (2014) A synthetic luciferin improves bioluminescence imaging in live mice. Nat Methods 11:393–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Berger F, Paulmurugan R, Bhaumik S, Gambhir SS (2008) Uptake kinetics and biodistribution of 14C-D-luciferin—a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging. Eur J Nucl Med Mol Imaging 35:2275–2285

    Article  PubMed  PubMed Central  Google Scholar 

  154. Aswendt M, Adamczak J, Couillard-Despres S, Hoehn M (2013) Boosting bioluminescence neuroimaging: an optimized protocol for brain studies. PLoS One 8:e55662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Lee KH, Byun SS, Paik JY et al (2003) Cell uptake and tissue distribution of radioiodine labelled D-luciferin: implications for luciferase based gene imaging. Nucl Med Commun 24:1003–1009

    Article  PubMed  CAS  Google Scholar 

  156. Ergen C, Heymann F, Al Rawashdeh W et al (2017) Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. Biomaterials 114:106–120

    Article  PubMed  CAS  Google Scholar 

  157. Shi Y, Kunjachan S, Wu Z et al (2015) Fluorophore labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging. Nanomedicine (London) 10:1111–1125

    Article  CAS  Google Scholar 

  158. Theek B, Baues M, Ojha T et al (2016) Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J Control Release 231:77–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Beztsinna N, Tsvetkova Y, Bartneck M et al (2016) Amphiphilic phospholipid-based riboflavin derivatives for tumor targeting nanomedicines. Bioconjug Chem 27:2048–2061

    Article  PubMed  CAS  Google Scholar 

  160. Al Rawashdeh W, Zuo S, Melle A et al (2017) Noninvasive assessment of elimination and retention using CT-FMT and kinetic whole-body modeling. Theranostics 7:1499–1510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Rosenhain S, Al Rawashdeh W, Kiessling F, Gremse F (2016) Sensitivity and accuracy of hybrid fluorescence-mediated tomography in deep tissue regions. J Biophotonics. https://doi.org/10.1002/jbio.201600232

  162. Chaudhari AJ, Darvas F, Bading JR et al (2005) Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys Med Biol 50:5421–5441

    Article  PubMed  Google Scholar 

  163. Vanhove C, Bankstahl JP, Kramer SD et al (2015) Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. Eur J Nucl Med Mol Imaging Phys 2:31

    Google Scholar 

  164. Balaban RS, Hampshire VA (2001) Challenges in small animal noninvasive imaging. ILAR J 42:248–262

    Article  PubMed  CAS  Google Scholar 

  165. Fuchs K, Kukuk D, Reischl G et al (2012) Oxygen breathing affects 3′-deoxy-3′-18F-fluorothymidine uptake in mouse models of arthritis and cancer. J Nucl Med 53:823–830

    Article  PubMed  CAS  Google Scholar 

  166. Hildebrandt IJ, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49:17–26

    Article  PubMed  CAS  Google Scholar 

  167. Gargiulo S, Greco A, Gramanzini M et al (2012) Mice anesthesia, analgesia, and care, part I: anesthetic considerations in preclinical research. ILAR J 53:E55–E69

    Article  PubMed  Google Scholar 

  168. Gargiulo S, Greco A, Gramanzini M et al (2012) Mice anesthesia, analgesia, and care, part II: anesthetic considerations in preclinical imaging studies. ILAR J 53:E70–E81

    Article  PubMed  Google Scholar 

  169. Kohn DF (1997) Anesthesia and analgesia in laboratory animals. Academic Press, Cambridge

    Google Scholar 

  170. Flecknell P (2015) Laboratory animal anaesthesia. Elsevier Science

  171. Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006

    PubMed  CAS  Google Scholar 

  172. Eintrei C, Sakoloff E, Smith CB (1999) Effects of diazepam and ketamine administered individually or in combination on regional rates of glucose utilization in rat brain. Br J Anaesth 82:596–602

    Article  PubMed  CAS  Google Scholar 

  173. Abdel el Motal SM, Sharp GW (1985) Inhibition of glucose-induced insulin release by xylazine. Endocrinology 116:2337–2340

    Article  PubMed  CAS  Google Scholar 

  174. Kohro S, Hogan QH, Nakae Y et al (2001) Anesthetic effects on mitochondrial ATP-sensitive K channel. Anesthesiology 95:1435–1340

    Article  PubMed  CAS  Google Scholar 

  175. Gao YR, Ma Y, Zhang Q et al (2017) Time to wake up: studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. NeuroImage 153:382–398

    Article  PubMed  Google Scholar 

  176. Shah D, Deleye S, Verhoye M et al (2016) Resting-state functional MRI and [18F]-FDG PET demonstrate differences in neuronal activity between commonly used mouse strains. NeuroImage 125:571–577

    Article  PubMed  Google Scholar 

  177. Wahlsten D, Metten P, Phillips TJ et al (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54:283–311

    Article  PubMed  Google Scholar 

  178. Ismail N, Garas P, Blaustein JD (2011) Long-term effects of pubertal stressors on female sexual receptivity and estrogen receptor-alpha expression in CD-1 female mice. Horm Behav 59:565–571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Obernier JA, Baldwin RL (2006) Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J 47:364–369

    Article  PubMed  CAS  Google Scholar 

  180. Laroche J, Gasbarro L, Herman JP, Blaustein JD (2009) Enduring influences of peripubertal/adolescent stressors on behavioral response to estradiol and progesterone in adult female mice. Endocrinology 150:3717–3725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Laroche J, Gasbarro L, Herman JP, Blaustein JD (2009) Reduced behavioral response to gonadal hormones in mice shipped during the peripubertal/adolescent period. Endocrinology 150:2351–2358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Gonder JC, Laber K (2007) A renewed look at laboratory rodent housing and management. ILAR J 48:29–36

    Article  PubMed  CAS  Google Scholar 

  183. Council NR (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington, DC

    Google Scholar 

  184. Baumans V, Van Loo PL (2013) How to improve housing conditions of laboratory animals: the possibilities of environmental refinement. Vet J 195:24–32

    Article  PubMed  CAS  Google Scholar 

  185. Sorge RE, Martin LJ, Isbester KA et al (2014) Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods 11:629–632

    Article  PubMed  CAS  Google Scholar 

  186. Bhang H-E, Tsuchiya N, Sysa-Shah P, Winkelmann C T, Gabrielson K (2013) In vivo small animal imaging: a comparison with gross and histopathologic observations in animal models. In: Haschek and Rousseaux’s handbook of toxicologic pathology. Elsevier Inc., Amsterdam, pp 287–315. https://doi.org/10.1016/B978-0-12-415759-0.00009-1

  187. Chen H, Thorne SH (2012) Practical methods for molecular in vivo optical imaging. Curr Protoc Cytom 59:12 24 1–12 24 11

    Google Scholar 

  188. Sevick-Muraca EM, Rasmussen JC (2008) Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine. J Biomed Opt 13:041303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Richter SH, Garner JP, Wurbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6:257–261

    Article  PubMed  CAS  Google Scholar 

  190. Rampon C, Tang YP, Goodhouse J et al (2000) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3:238–244

    Article  PubMed  CAS  Google Scholar 

  191. Wurbel H (2002) Behavioral phenotyping enhanced—beyond (environmental) standardization. Genes Brain Behav 1:3–8

    Article  PubMed  CAS  Google Scholar 

  192. van der Staay FJ, Steckler T (2002) The fallacy of behavioral phenotyping without standardisation. Genes Brain Behav 1:9–13

    Article  PubMed  Google Scholar 

  193. Giedd JN, Raznahan A, Mills KL, Lenroot RK (2012) Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol Sex Differ 3:19

    Article  PubMed  PubMed Central  Google Scholar 

  194. Prendergast BJ, Onishi KG, Zucker I (2014) Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci Biobehav Rev 40:1–5

    Article  PubMed  Google Scholar 

  195. Badea C, Hedlund LW, Johnson GA (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31:3324–3329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Mannheim JG, Schlichthaerle T, Kuebler L et al (2016) Comparison of small animal CT contrast agents. Contrast Media Mol Imaging 11:272–284

    Article  PubMed  CAS  Google Scholar 

  197. Mahling M, Fuchs K, Thaiss WM et al (2015) A comparative pO2 probe and [18F]-fluoro-azomycinarabino-furanoside ([18F]FAZA) PET study reveals anesthesia-induced impairment of oxygenation and perfusion in tumor and muscle. PLoS One 10:e0124665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Woo SK, Lee TS, Kim KM et al (2008) Anesthesia condition for (18)F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol 35:143–150

    Article  PubMed  CAS  Google Scholar 

  199. Flores JE, McFarland LM, Vanderbilt A et al (2008) The effects of anesthetic agent and carrier gas on blood glucose and tissue uptake in mice undergoing dynamic FDG-PET imaging: sevoflurane and isoflurane compared in air and in oxygen. Mol Imaging Biol 10:192–200

    Article  PubMed  Google Scholar 

  200. Chan LW, Hapdey S, English S et al (2006) The influence of tumor oxygenation on (18)F-FDG (fluorine-18 deoxyglucose) uptake: a mouse study using positron emission tomography (PET). Radiat Oncol 1:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Lee KH, Ko BH, Paik JY et al (2005) Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med 46:1531–1536

    PubMed  CAS  Google Scholar 

  202. Toyama H, Ichise M, Liow JS et al (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256

    Article  PubMed  CAS  Google Scholar 

  203. Maier FC, Wehrl HF, Schmid AM et al (2014) Longitudinal PET-MRI reveals beta-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nat Med 20:1485–1492

    Article  PubMed  CAS  Google Scholar 

  204. Walker M, Ehrlichmann W, Stahlschmidt A et al (2016) In vivo evaluation of 11C-DASB for quantitative SERT imaging in rats and mice. J Nucl Med 57:115–121

    Article  PubMed  CAS  Google Scholar 

  205. Fischer K, Sossi V, Schmid A et al (2011) Noninvasive nuclear imaging enables the in vivo quantification of striatal dopamine receptor expression and raclopride affinity in mice. J Nucl Med 52:1133–1141

    Article  PubMed  Google Scholar 

  206. McConville P (2011) Small animal preparation and handling in MRI. Methods Mol Biol 771:89–113

    Article  PubMed  CAS  Google Scholar 

  207. Jonckers E, Delgado y Palacios R, Shah D et al (2014) Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn Reson Med 72:1103–1112

    Article  PubMed  CAS  Google Scholar 

  208. Lahti KM, Ferris CF, Li F et al (1999) Comparison of evoked cortical activity in conscious and propofol-anesthetized rats using functional MRI. Magn Reson Med 41:412–416

    Article  PubMed  CAS  Google Scholar 

  209. Hodkinson DJ, de Groote C, McKie S et al (2012) Differential effects of anaesthesia on the phMRI response to acute ketamine challenge. Br J Med Med Res 2:373–385

    Article  PubMed  PubMed Central  Google Scholar 

  210. Haensel JX, Spain A, Martin C (2015) A systematic review of physiological methods in rodent pharmacological MRI studies. Psychopharmacology 232:489–499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Grandjean J, Schroeter A, Batata I, Rudin M (2014) Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. NeuroImage 102(Pt 2):838–847

    Article  PubMed  Google Scholar 

  212. Huang SM, Wu YL, Peng SL et al (2016) Inter-Strain Differences in Default Mode Network: a resting state fMRI study on spontaneously hypertensive rat and Wistar Kyoto rat. Sci Rep 6:21697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Chen XJ, Kovacevic N, Lobaugh NJ et al (2006) Neuroanatomical differences between mouse strains as shown by high-resolution 3D MRI. NeuroImage 29:99–105

    Article  PubMed  Google Scholar 

  214. Schwarcz A, Natt O, Watanabe T et al (2003) Localized proton MRS of cerebral metabolite profiles in different mouse strains. Magn Reson Med 49:822–827

    Article  PubMed  CAS  Google Scholar 

  215. Henckens MJ, van der Marel K, van der Toorn A et al (2015) Stress-induced alterations in large-scale functional networks of the rodent brain. NeuroImage 105:312–322

    Article  PubMed  Google Scholar 

  216. Liang Z, King J, Zhang N (2014) Neuroplasticity to a single-episode traumatic stress revealed by resting-state fMRI in awake rats. NeuroImage 103:485–491

    Article  PubMed  PubMed Central  Google Scholar 

  217. Goelman G, Ilinca R, Zohar I, Weinstock M (2014) Functional connectivity in prenatally stressed rats with and without maternal treatment with ladostigil, a brain-selective monoamine oxidase inhibitor. Eur J Neurosci 40:2734–2743

    Article  PubMed  CAS  Google Scholar 

  218. Thigpen JE, Setchell KD, Kissling GE et al (2013) The estrogenic content of rodent diets, bedding, cages, and water bottles and its effect on bisphenol A studies. J Am Assoc Lab Anim Sci 52:130–141

    PubMed  PubMed Central  CAS  Google Scholar 

  219. Domey J, Teichgraber U, Hilger I (2015) Gold nanoparticles allow detection of early-stage edema in mice via computed tomography imaging. Int J Nanomedicine 10:3803–3814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Kunjachan S, Pola R, Gremse F et al (2014) Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett 14:972–981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Kunjachan S, Gremse F, Theek B et al (2013) Noninvasive optical imaging of nanomedicine biodistribution. ACS Nano 7:252–262

    Article  PubMed  CAS  Google Scholar 

  222. Foster B, Bagci U, Mansoor A et al (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96

    Article  PubMed  Google Scholar 

  223. Gremse F, Stark M, Ehling J et al (2016) Imalytics preclinical: interactive analysis of biomedical volume data. Theranostics 6:328–341

    Article  PubMed  PubMed Central  Google Scholar 

  224. Baiker M, Milles J, Dijkstra J et al (2010) Atlas-based whole-body segmentation of mice from low-contrast micro-CT data. Med Image Anal 14:723–737

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank the ESMI for their support and the possibility of establishing a study group for standardization in small animal imaging as a platform for scientific exchange within the society.

This study was supported by FWO and Stichting Alzheimer Onderzoek (SAO-FRA, Grant Nr 14027). Firat Kara is holder of an “FWO Postdoc” grant from the Fund for Scientific Research - Flanders (FWO, Vlaanderen, Belgium). F. Gremse was supported by the German Ministry for Education and Research (BioPhotonics/13N13355) with co-funding from the European Union Seventh Framework Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia G. Mannheim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannheim, J.G., Kara, F., Doorduin, J. et al. Standardization of Small Animal Imaging—Current Status and Future Prospects. Mol Imaging Biol 20, 716–731 (2018). https://doi.org/10.1007/s11307-017-1126-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1126-2

Key words

Navigation