Molecular Imaging and Biology

, Volume 20, Issue 2, pp 205–212 | Cite as

An Automated Multidose Synthesis of the Potentiometric PET Probe 4-[18F]Fluorobenzyl-Triphenylphosphonium ([18F]FBnTP)

  • Christopher M. Waldmann
  • Adrian Gomez
  • Phillip Marchis
  • Sean T. Bailey
  • Milica Momcilovic
  • Anthony E. Jones
  • David B. Shackelford
  • Saman SadeghiEmail author
Research Article



The aim of this study was the automated synthesis of the mitochondrial membrane potential sensor 4-[18F]fluorobenzyl-triphenylphosphonium ([18F]FBnTP) on a commercially available synthesizer in activity yields (AY) that allow for imaging of multiple patients.


A three-pot, four-step synthesis was implemented on the ELIXYS FLEX/CHEM radiosynthesizer (Sofie Biosciences) and optimized for radiochemical yield (RCY), radiochemical purity (RCP) as well as chemical purity during several production runs (n = 24). The compound was purified by solid-phase extraction (SPE) with a Sep-Pak Plus Accell CM cartridge, thereby avoiding HPLC purification.


Under optimized conditions, AY of 1.4–2.2 GBq of [18F]FBnTP were obtained from 9.4 to 12.0 GBq [18F]fluoride in 90–92 min (RCY = 28.6 ± 5.1 % with n = 3). Molar activities ranged from 80 to 99 GBq/μmol at the end of synthesis. RCP of final formulations was > 99 % at the end of synthesis and > 95 % after 8 h. With starting activities of 23.2–33.0 GBq, RCY decreased to 16.1 ± 0.4 % (n = 3). The main cause of the decline in RCY when high amounts of [18F]fluoride are used is radiolytic decomposition of [18F]FBnTP during SPE purification.


In initial attempts, the probe was synthesized with RCY < 0.6 % when starting activities up to 44.6 GBq were used. Rapid radiolysis of the intermediate 4-[18F]fluorobenzaldehyde and the final product [18F]FBnTP during purification was identified as the main cause for low yields in high-activity runs. Radiolytic decomposition was hindered by the addition of radical scavengers during synthesis, purification, and formulation, thereby improving AY and RCP. The formulated probe in injectable form was synthesized without the use of HPLC and passed all applicable quality control tests.

Key words

4-[18F]Fluorobenzyl-triphenylphosphonium [18F]FBnTP Mitochondrial metabolism Positron emission tomography 4-[18F]fluorobenzaldehyde Radiolysis Antioxidants Solid-phase extraction purification 



We would like to thank Dr. Michael E. Phelps for support and guidance with this study; Dr. Roger Slavik, Krzysztof Bobinski, and Daniel Yeh for providing [18F]fluoride; Dr. Jason Lee, Dr. Tove Olafsen, and Charles Zamilpa for their help with the small animal imaging; and Dr. Michael van Dam, Jeffrey Collins as well as Krzysztof Bobinski for valuable technical input.

Funding Information

The authors gratefully acknowledge the support from NIH through program, research, and training grants (CA186842, CA208642 and CA086306) and the support from the Department of Energy (DE-SC0012353).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11307_2017_1119_MOESM1_ESM.pdf (188 kb)
ESM 1 (PDF 187 kb)
11307_2017_1119_MOESM2_ESM.pdf (227 kb)
ESM 2 (PDF 227 kb)
11307_2017_1119_MOESM3_ESM.pdf (206 kb)
ESM 3 (PDF 205 kb)
11307_2017_1119_MOESM4_ESM.pdf (508 kb)
ESM 4 (PDF 508 kb)


  1. 1.
    Montgomery MK, Turner N (2015) Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 4:R1–R15CrossRefPubMedGoogle Scholar
  2. 2.
    Dorn GW, Vega RB, Kelly DP (2015) Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 29:1981–1991CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342:619–630CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11:9–15CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang Y, Avalos JL (2017) Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WIREs Syst Biol Med 9(n/a):e1373. CrossRefGoogle Scholar
  6. 6.
    Ehrenberg B, Montana V, Wei MD et al (1988) Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys J 53:785–794CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fukuda H, Syrota P, Charbonneau P et al (1986) Use of 11C-triphenylmethylphosphonium for the evaluation of membrane potential in the heart by positron-emission tomography. Eur J Nucl Med 11:478–483PubMedGoogle Scholar
  8. 8.
    Madar I, Anderson JH, Szabo Z et al (1999) Enhanced uptake of [11C]TPMP in canine brain tumor: a PET study. J Nucl Med 40:1180–1185PubMedGoogle Scholar
  9. 9.
    Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 97:9226–9233CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ravert HT, Madar I, Dannals RF (2004) Radiosynthesis of 3-[18F]fluoropropyl and 4-[18F]fluorobenzyl triarylphosphonium ions. J Label Compd Radiopharm 47:469–476CrossRefGoogle Scholar
  11. 11.
    Madar I, Huang Y, Ravert H et al (2009) Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med 50:774–780CrossRefPubMedGoogle Scholar
  12. 12.
    Madar I, Isoda T, Finley P, Angle J, Wahl R (2011) 18F-fluorobenzyl triphenyl phosphonium: a noninvasive sensor of brown adipose tissue thermogenesis. J Nucl Med 52:808–814CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Higuchi T, Fukushima K, Rischpler C et al (2011) Stable delineation of the ischemic area by the PET perfusion tracer 18F-fluorobenzyl triphenyl phosphonium after transient coronary occlusion. J Nucl Med 52:965–969CrossRefPubMedGoogle Scholar
  14. 14.
    Madar I, Ravert HT, Du Y et al (2006) Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med 47:1359–1366PubMedGoogle Scholar
  15. 15.
    Ravert HT, Holt DP, Dannals RF (2014) A microwave radiosynthesis of the 4-[18F]-fluorobenzyltriphenylphosphonium ion. J Label Compd Radiopharm 57:695–698CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Zhang C, Lau J et al (2016) One-step synthesis of 4-[18F]fluorobenzyltriphenylphosphonium cation for imaging with positron emission tomography. J Label Compd Radiopharm 59:467–471CrossRefGoogle Scholar
  17. 17.
    Sanford MS, Scott PJH (2016) Moving metal-mediated 18F-fluorination from concept to clinic. ACS Cent Sci 2:128–130CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lazari M, Collins J, Shen B et al (2014) Fully automated production of diverse 18F-labeled PET tracers on the ELIXYS multireactor radiosynthesizer without hardware modification. J Nucl Med Technol 42:203–210CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Claggett SB, Quinn KM, Lazari M et al (2013) Simplified programming and control of automated radiosynthesizers through unit operations. Eur J Nucl Med Mol Imaging Res 3:53Google Scholar
  20. 20.
    Speranza A, Ortosecco G, Castaldi E et al (2009) Fully automated synthesis procedure of 4-[18F]fluorobenzaldehyde by commercial synthesizer: amino-oxi peptide labelling prosthetic group. Appl Radiat Isot 67:1664–1669CrossRefPubMedGoogle Scholar
  21. 21.
    Poethko T, Schottelius M, Thumshirn G et al (2004) Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 45:892–902PubMedGoogle Scholar
  22. 22.
    Scott PJH, Hockley BG, Kung HF et al (2009) Studies into radiolytic decomposition of fluorine-18 labeled radiopharmaceuticals for positron emission tomography. Appl Radiat Isot 67:88–94CrossRefPubMedGoogle Scholar
  23. 23.
    Schueller MJ, Alexoff DL, Schlyer DJ (2007) Separating long-lived metal ions from 18F during H2 18O recovery. Nucl Instrum Methods Phys Res Sect B 261:795–799CrossRefGoogle Scholar
  24. 24.
    Iwata R, Pascali C, Bogni A et al (2000) A new, convenient method for the preparation of 4-[18F]fluorobenzyl halides. Appl Radiat Isot 52:87–92CrossRefPubMedGoogle Scholar
  25. 25.
    Rodnick ME, Brooks AF, Hockley BG et al (2013) A fully-automated one-pot synthesis of [18F]fluoromethylcholine with reduced dimethylaminoethanol contamination via [18F]fluoromethyl tosylate. Appl Radiat Isot 78:26–32CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Su D, Cheng Y, Liu M et al (2013) Comparison of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One 8:e54505CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  • Christopher M. Waldmann
    • 1
  • Adrian Gomez
    • 2
  • Phillip Marchis
    • 1
  • Sean T. Bailey
    • 3
  • Milica Momcilovic
    • 3
  • Anthony E. Jones
    • 1
  • David B. Shackelford
    • 3
  • Saman Sadeghi
    • 1
    Email author
  1. 1.Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesUSA
  3. 3.Department of Pulmonary and Critical Care Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations