Molecular Imaging and Biology

, Volume 20, Issue 2, pp 318–323 | Cite as

Histogram Analysis of T1-Weighted, T2-Weighted, and Postcontrast T1-Weighted Images in Primary CNS Lymphoma: Correlations with Histopathological Findings—a Preliminary Study

  • Hans-Jonas Meyer
  • Stefan Schob
  • Benno Münch
  • Clara Frydrychowicz
  • Nikita Garnov
  • Ulf Quäschling
  • Karl-Titus Hoffmann
  • Alexey Surov
Research Article



Previously, some reports mentioned that magnetic resonance imaging (MRI) can predict histopathological features in primary CNS lymphoma (PCNSL). The reported data analyzed diffusion-weighted imaging findings. The aim of this study was to investigate possible associations between histopathological findings, such as tumor cellularity, nucleic areas and proliferation index Ki-67, and signal intensity on T1-weighted and T2-weighted images in PCNSL.


For this study, 18 patients with PCNSL were retrospectively investigated by histogram analysis on precontrast and postcontrast T1-weighted and fluid-attenuated inversion recovery (FLAIR) images. For every patient, histopathology parameters, nucleic count, total nucleic area, and average nucleic area, as well as Ki-67 index, were estimated.


Correlation analysis identified several statistically significant associations. Skewness derived from precontrast T1-weighted images correlated with Ki-67 index (p = − 0.55, P = 0.028). Furthermore, entropy derived from precontrast T1-weighted images correlated with average nucleic area (p = 0.53, P = 0.04). Several parameters from postcontrast T1-weighted images correlated with nucleic count: maximum signal intensity (p = 0.59, P = 0.017), P75 (p = 0.56, P = 0.02), and P90 (p = 0.52, P = 0.04) as well as SD (p = 0.58, P = 0.02). Maximum signal intensity derived from FLAIR sequence correlated with nucleic count (p = 0.50, P = 0.03).


Histogram-derived parameters of conventional MRI sequences can reflect different histopathological features in PSNCL.

Key words

Primary CNS lymphoma Signal intensity T1-weighted images T2-weighted images Signal intensity Histopathology Ki-67 



Apparent diffusion coefficient


Dynamic contrast-enhanced MRI


Diffusion-weighted imaging


Primary CNS lymphoma


Region of interest


Signal intensity


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Citterio G, Reni M, Gatta G et al (2017) Primary central nervous system lymphoma. Crit Rev Oncol Hematol 113:97–110CrossRefPubMedGoogle Scholar
  2. 2.
    Haldorsen IS, Espeland A, Larsson EM (2011) Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol 32:984–992CrossRefPubMedGoogle Scholar
  3. 3.
    Kickingereder P, Wiestler B, Sahm F et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272:843–850CrossRefPubMedGoogle Scholar
  4. 4.
    Barajas RF, Rubenstein JL, Chang JS et al (2010) Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol 31:60–66CrossRefPubMedGoogle Scholar
  5. 5.
    Schob S, Meyer J, Gawlitza M et al (2016) Diffusion-weighted MRI reflects proliferative activity in primary CNS lymphoma. PLoS One 11:e0161386CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huang WY, Wen JB, Wu G et al (2016) Diffusion-weighted imaging for predicting and monitoring primary central nervous system lymphoma treatment response. AJNR Am J Neuroradiol 37:2010–2018CrossRefGoogle Scholar
  7. 7.
    Chang PD, Malone HR, Bowden SG et al (2017) A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 38:890–898CrossRefPubMedGoogle Scholar
  8. 8.
    Schob S, Meyer HJ, Pazaitis N et al (2017) ADC histogram analysis of cervical cancer aids detecting lymphatic metastases—a preliminary study. Mol Imaging Biol.
  9. 9.
    Surov A, Caysa H, Wienke A et al (2015) Correlation between different ADC fractions, cell count, Ki-67, total nucleic areas and average nucleic areas in meningothelial meningiomas. Anticancer Res 35:6841–6846PubMedGoogle Scholar
  10. 10.
    Surov A, Gottschling S, Mawrin C et al (2015) Diffusion-weighted imaging in meningioma: prediction of tumor grade and association with histopathological parameters. Transl Oncol 8:517–523CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schob S, Meyer HJ, Dieckow J et al (2017) Histogram analysis of diffusion weighted imaging at 3T is useful for prediction of lymphatic metastatic spread, proliferative activity, and cellularity in thyroid cancer. Int J Mol Sci 18:E821CrossRefPubMedGoogle Scholar
  12. 12.
    Woo S, Cho JY, Kim SY et al (2014) Histogram analysis of apparent diffusion coefficient map of diffusion-weighted MRI in endometrial cancer: a preliminary correlation study with histological grade. Acta Radiol 55:1270–1277CrossRefPubMedGoogle Scholar
  13. 13.
    Yun BL, Cho N, Li M et al (2014) Intratumoral heterogeneity of breast cancer xenograft models: texture analysis of diffusion-weighted MR imaging. Korean J Radiol 15:591–604CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hu XX, Yang ZX, Liang HY et al (2016) Whole-tumor MRI histogram analyses of hepatocellular carcinoma: correlations with Ki-67 labeling index. J Magn Reson Imaging.
  15. 15.
    Martin B, Paesmans M, Mascaux C et al (2004) Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. Br J Cancer 91:2018–2025CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li L, Han D, Wang X et al (2017) Prognostic values of Ki-67 in neoadjuvant setting for breast cancer: a systematic review and meta-analysis. Future Oncol 13:1021–1034CrossRefPubMedGoogle Scholar
  17. 17.
    He X, Chen Z, Fu T et al (2014) Ki-67 is a valuable prognostic predictor of lymphoma but its utility varies in lymphoma subtypes: evidence from a systematic meta-analysis. BMC Cancer 14:153CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mori N, Ota H, Mugikura S et al (2015) Luminal-type breast cancer: correlation of apparent diffusion coefficients with the Ki-67 labeling index. Radiology 274:66–73CrossRefPubMedGoogle Scholar
  19. 19.
    Lee SH, Cho N, Kim SJ et al (2008) Correlation between high resolution dynamic MR features and prognostic factors in breast cancer. Korean J Radiol 9:10–18CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nakano T, Asano K, Miura H et al (2002) Meningiomas with brain edema: radiological characteristics on MRI and review of the literature. Clin Imaging 26:243–249CrossRefPubMedGoogle Scholar
  21. 21.
    Schob S, Frydrychowicz C, Gawlitza M et al (2016) Signal intensities in preoperative MRI do not reflect proliferative activity in meningioma. Transl Oncol 9:274–279CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  1. 1.Department of Diagnostic and Interventional RadiologyUniversity Hospital LeipzigLeipzigGermany
  2. 2.Department of NeuroradiologyUniversity Hospital LeipzigLeipzigGermany
  3. 3.Department of NeuropathologyUniversity Hospital LeipzigLeipzigGermany

Personalised recommendations