Molecular Imaging and Biology

, Volume 20, Issue 2, pp 268–274 | Cite as

Monitoring of Cardiac Remodeling in a Mouse Model of Pressure-Overload Left Ventricular Hypertrophy with [18F]FDG MicroPET

  • Andrei Todica
  • Nick L. Beetz
  • Lisa Günther
  • Mathias J. Zacherl
  • Ulrich Grabmaier
  • Bruno Huber
  • Peter Bartenstein
  • Stefan Brunner
  • Sebastian Lehner
Research Article
  • 158 Downloads

Abstract

Purpose

This study aims to analyze the left ventricular function parameters, scar load, and hypertrophy in a mouse model of pressure-overload left ventricular (LV) hypertrophy over the course of 8 weeks using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) micro-positron emission tomography (microPET) imaging.

Procedures

LV hypertrophy was induced in C57BL/6 mice by transverse aortic constriction (TAC). Myocardial hypertrophy developed after 2–4 weeks. ECG-gated microPET scans with [18F]FDG were performed 4 and 8 weeks after surgery. The extent of fibrosis was measured by histopathologic analysis. LV function parameters and scar load were calculated using QGS®/QPS®. LV metabolic volume (LVMV) and percentage injected dose per gram were estimated by threshold-based analysis.

Results

The fibrotic tissue volume increased significantly from 4 to 8 weeks after TAC (​1.67 vs. 3.91  mm3; P = 0.044). There was a significant increase of the EDV (4 weeks: 54 ± 15 μl, 8 weeks: 79 ± 32 μl, P < 0.01) and LVMV (4 weeks: 222 ± 24 μl, 8 weeks: 276 ± 52 μl, P < 0.01) as well as a significant decrease of the LVEF (4 weeks: 56 ± 17 %, 8 weeks: 44 ± 20 %, P < 0.01). The increase of LVMV had a high predictive value regarding the amount of ex vivo measured fibrotic tissue (R = 0.905, P < 0.001). The myocardial metabolic defects increased within 4 weeks (P = 0.055) but only moderately correlated with the fibrosis volume (R = 0.502, P = 0.021). The increase in end-diastolic volume showed a positive correlation with the fibrosis at 8 weeks (R = 0.763, P = 0.017).

Conclusions

[18F]FDG-PET is applicable for serial in vivo monitoring of the TAC mouse model. Myocardial hypertrophy, the dilation of the left ventricle, and the decrease in LVEF could be reliably quantified over time, as well as the developing localized scar. The increase in volume over time is predictive of a high fibrosis load.

Key words

[18F]FDG-PET Hypertrophy Mice Pressure overload Cardiac remodeling 

Notes

Acknowledgements

A part of this work originated from the doctoral thesis of Nick L. Beetz.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Levy D, Garrison RJ, Savage DD et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566CrossRefPubMedGoogle Scholar
  2. 2.
    Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128:388–400CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marketou ME, Parthenakis F, Vardas PE (2016) Pathological left ventricular hypertrophy and stem cells: current evidence and new perspectives. Stem Cells Int 2016:5720758CrossRefPubMedGoogle Scholar
  4. 4.
    Hein S, Arnon E, Kostin S et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991CrossRefPubMedGoogle Scholar
  5. 5.
    Katz AM (1990) Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med 322:100–110CrossRefPubMedGoogle Scholar
  6. 6.
    Weidemann F, Herrmann S, Stork S et al (2009) Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 120:577–584CrossRefPubMedGoogle Scholar
  7. 7.
    McLenachan JM, Dargie HJ (1990) Ventricular arrhythmias in hypertensive left ventricular hypertrophy. Relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens 3:735–740CrossRefPubMedGoogle Scholar
  8. 8.
    Swynghedauw B, Chevalier B, Charlemagne D et al (1997) Cardiac hypertrophy, arrhythmogenicity and the new myocardial phenotype. II. The cellular adaptational process. Cardiovasc Res 35:6–12CrossRefPubMedGoogle Scholar
  9. 9.
    Zhong M, Alonso CE, Taegtmeyer H, Kundu BK (2013) Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo. J Nucl Med 54:609–615CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Coelho-Filho OR, Shah RV, Neilan TG et al (2014) Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc 3:e000790CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gross L, Paintmayer L, Lehner S et al (2016) FDG-PET reveals improved cardiac regeneration and attenuated adverse remodelling following Sitagliptin + G-CSF therapy after acute myocardial infarction. Eur Heart J Cardiovasc Imaging 17:136–145CrossRefPubMedGoogle Scholar
  12. 12.
    Huber BC, Beetz NL, Laskowski A et al (2015) Attenuation of cardiac hypertrophy by G-CSF is associated with enhanced migration of bone marrow-derived cells. J Cell Mol Med 19:1033–1041CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lehner S, Todica A, Brunner S et al (2012) Temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction: an in vivo imaging study in mice. Mol Imaging 11:461–470CrossRefPubMedGoogle Scholar
  14. 14.
    Brunner S, Todica A, Boning G et al (2012) Left ventricular functional assessment in murine models of ischemic and dilated cardiomyopathy using [18 F]FDG-PET: comparison with cardiac MRI and monitoring erythropoietin therapy. Eur J Nucl Med Mol Iimaging Res 2:43Google Scholar
  15. 15.
    Boning G, Todica A, Vai A et al (2013) Erroneous cardiac ECG-gated PET list-mode trigger events can be retrospectively identified and replaced by an offline reprocessing approach: first results in rodents. Phys Med Biol 58:7937–7959CrossRefPubMedGoogle Scholar
  16. 16.
    Lehner S, Todica A, Vanchev Y et al (2014) In vivo monitoring of parathyroid hormone treatment after myocardial infarction in mice with [68Ga]annexin A5 and [18F]fluorodeoxyglucose positron emission tomography. Mol Imaging 13Google Scholar
  17. 17.
    Todica A, Zacherl MJ, Wang H et al (2014) In-vivo monitoring of erythropoietin treatment after myocardial infarction in mice with [68Ga]Annexin A5 and [18F]FDG PET. J Nucl Cardiol 21:1191–1199CrossRefPubMedGoogle Scholar
  18. 18.
    Croteau E, Benard F, Cadorette J et al (2003) Quantitative gated PET for the assessment of left ventricular function in small animals. J Nucl Med 44:1655–1661PubMedGoogle Scholar
  19. 19.
    Xia Y, Lee K, Li N et al (2009) Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem Cell Biol 131:471–481CrossRefPubMedGoogle Scholar
  20. 20.
    Kong EJ, Lee SH, Cho IH (2013) Myocardial fibrosis in hypertrophic cardiomyopathy demonstrated by integrated cardiac F-18 FDG PET/MR. Nucl Med Mol Imaging 47:196–200CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Maron MS, Olivotto I, Maron BJ et al (2009) The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol 54:866–875CrossRefPubMedGoogle Scholar
  22. 22.
    Olivotto I, Cecchi F, Gistri R et al (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol 47:1043–1048CrossRefPubMedGoogle Scholar
  23. 23.
    Petersen SE, Jerosch-Herold M, Hudsmith LE et al (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425CrossRefPubMedGoogle Scholar
  24. 24.
    Cecchi F, Olivotto I, Gistri R et al (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035CrossRefPubMedGoogle Scholar
  25. 25.
    Davis J, Molkentin JD (2014) Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol 70:9–18CrossRefPubMedGoogle Scholar
  26. 26.
    Anderson CD, Heydarkhan-Hagvall S, Schenke-Layland K et al (2008) The role of cytoprotective cytokines in cardiac ischemia/reperfusion injury. J Surg Res 148:164–171CrossRefPubMedGoogle Scholar
  27. 27.
    Chimenti I, Smith RR, Li TS et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971–980CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Leri A, Kajstura J, Anversa P (2011) Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 109:941–961CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Theiss HD, Vallaster M, Rischpler C et al (2011) Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Res 7:244–255CrossRefPubMedGoogle Scholar
  30. 30.
    Bishop SP, Altschuld RA (1970) Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am J Phys 218:153–159Google Scholar
  31. 31.
    Doenst T, Pytel G, Schrepper A et al (2010) Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 86:461–470CrossRefPubMedGoogle Scholar
  32. 32.
    Young ME, Yan J, Razeghi P et al (2007) Proposed regulation of gene expression by glucose in rodent heart. Gene Regul Syst Bio 1:251–262PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kundu BK, Zhong M, Sen S et al (2015) Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 130:211–220CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMedGoogle Scholar
  35. 35.
    Kreissl MC, Stout DB, Wong KP et al (2011) Influence of dietary state and insulin on myocardial, skeletal muscle and brain [F]-fluorodeoxyglucose kinetics in mice. Eur J Nucl Med Mol Imaging Res 1:8Google Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  1. 1.Department of Nuclear MedicineUniversity Hospital, LMU MunichMunichGermany
  2. 2.Medical Department I-CardiologyUniversity Hospital, LMU MunichMunichGermany
  3. 3.Ambulatory Healthcare Center Dr. Neumaier & Colleagues, Radiology, Nuclear Medicine, Radiation TherapyRegensburgGermany

Personalised recommendations