Advertisement

Molecular Imaging and Biology

, Volume 20, Issue 2, pp 309–317 | Cite as

PET Imaging on Dynamic Metabolic Changes after Combination Therapy of Paclitaxel and the Traditional Chinese Medicine in Breast Cancer-Bearing Mice

  • Yao Chen
  • Ling Wang
  • Hao Liu
  • Fahuan Song
  • Caiyun Xu
  • Kai Zhang
  • Qing Chen
  • Shuang Wu
  • Yunqi Zhu
  • Ying Dong
  • Min Zhou
  • Hong Zhang
  • Mei Tian
Research Article
  • 296 Downloads

Abstract

Purpose

The aim of the study was to non-invasively evaluate the anticancer activity of a traditional Chinese medicine—Huaier, combined with paclitaxel (PTX) in breast cancer bearing mice by detecting dynamic metabolic changes with positron emission tomography (PET).

Procedures

Balb/c nude mice were randomly divided into one of the four groups: Huaier, PTX, PTX + Huaier, or the control. PET imaging with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) was performed to monitor the metabolic changes in BT474 (luminal B) and MDA-MB-231 (triple-negative) breast cancer xenografts. Immunohistochemistry (IHC) study was performed immediately after the final PET scan to assess the expressions of phosphatidylinositol 3-kinase (PI3K), phospho-AKT (p-AKT), caspase-3, and vascular endothelial growth factor (VEGF).

Results

Compared to the control group, [18F]FDG accumulation demonstrated a significant decrease in PTX + Huaier (p < 0.01) or Huaier group (p < 0.05), which was consistent to the decreased expression of PI3K (p < 0.05) and p-AKT (p < 0.05) in the breast cancer xenografts.

Conclusion

The therapeutic effect of Huaier combined with PTX was superior than the PTX alone in BT474 and MDA-MB-231 breast cancer-bearing mice. [18F]FDG PET imaging could be a potential non-invasive approach to assess the metabolic changes after chemotherapy combined with traditional Chinese medicine in the breast cancer.

Key words

Positron emission tomography (PET) Traditional Chinese medicine (TCM) Paclitaxel Breast cancer 

Notes

Acknowledgments

This research was supported by grants from the National Basic Research Program of China (Grant No. 2014CB744505). We also thank Dr. Weizhong Gu for his excellent technical assistance and valuable advice on IHC staining.

Compliance with Ethical Standards

All animal studies were approved by the Zhejiang University Ethics Committee for Animal Experiments (Protocol No. ZJU201407-1-01-071).

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Torre LA, Bray F, Siegel RL, et l. (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108CrossRefPubMedGoogle Scholar
  2. 2.
    CDC (2015) Cancer Statistics Working Group. United States cancer statistics: 1999-2012 Incidence and mortality web-based repord. Centers for Disease Control and Prevention and National Cancer InstituteGoogle Scholar
  3. 3.
    Schneider BP, Hershman DL, Loprinzi C (2015) Symptoms: chemotherapy-induced peripheral neuropathy. Adv Exp Med Biol 862:77–87CrossRefPubMedGoogle Scholar
  4. 4.
    Komaki K, Sano N, Tangoku A (2006) Problems in histological grading of malignancy and its clinical significance in patients with operable breast cancer. Breast Cancer 13:249–253CrossRefPubMedGoogle Scholar
  5. 5.
    Guenancia C, Lefebvre A, Cardinale D et al (2016) Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: a systematic review and meta-analysis. J Clin Oncol 34:3157–3165CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Morrow M (2013) Personalizing extent of breast cancer surgery according to molecular subtypes. Breast 22(Suppl 2):S106–S109CrossRefPubMedGoogle Scholar
  7. 7.
    Borger JH, Hooning MJ, Boersma LJ et al (2007) Cardiotoxic effects of tangential breast irradiation in early breast cancer patients: the role of irradiated heart volume. Int J Radiat Oncol Biol Phys 69:1131–1138CrossRefPubMedGoogle Scholar
  8. 8.
    Ren J, Li G, Zhao W, Lin L, Ye T (2016) Norcantharidin combined with ABT-737 for hepatocellular carcinoma: therapeutic effects and molecular mechanisms. World J Gastroenterol 22:3962–3968CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hu H, Luo L, Liu F et al (2016) Anti-cancer and sensibilisation effect of triptolide on human epithelial ovarian cancer. J Cancer 7:2093–2099CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kang Y, Hu W, Bai E et al (2016) Curcumin sensitizes human gastric cancer cells to 5-fluorouracil through inhibition of the NFkappaB survival-signaling pathway. Onco Targets Ther 9:7373–7384CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xiong J, Su T, Qu Z et al (2016) Triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer. Oncotarget 7:23933–23946PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang N, Kong X, Yan S et al (2010) Huaier aqueous extract inhibits proliferation of breast cancer cells by inducing apoptosis. Cancer Sci 101:2375–2383CrossRefPubMedGoogle Scholar
  13. 13.
    Zheng J, Li C, Wu X et al (2014) Astrocyte elevated gene-1 (AEG-1) shRNA sensitizes Huaier polysaccharide (HP)-induced anti-metastatic potency via inactivating downstream P13K/Akt pathway as well as augmenting cell-mediated immune response. Tumour Biol 35:4219–4224CrossRefPubMedGoogle Scholar
  14. 14.
    Zheng J, Li C, Wu X et al (2014) Huaier polysaccharides suppresses hepatocarcinoma MHCC97-H cell metastasis via inactivation of EMT and AEG-1 pathway. Int J Biol Macromol 64:106–110CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang YZ, Yu KD, Peng WT et al (2014) Enriched variations in TEKT4 and breast cancer resistance to paclitaxel. Nat Commun 5:3802PubMedGoogle Scholar
  16. 16.
    Yang Q (2015) Neoadjuvant chemotherapy with or without Huaier granule in treating women with locally advanced breast cancer that can be removed by surgery. ClinicalTrials.gov.
  17. 17.
    Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McLarty K, Fasih A, Scollard DA et al (2009) 18F-FDG small-animal PET/CT differentiates trastuzumab-responsive from unresponsive human breast cancer xenografts in athymic mice. J Nucl Med 50:1848–1856CrossRefPubMedGoogle Scholar
  19. 19.
    Jacobson O, Chen X (2013) Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev 65:1214–1256CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Alberini JL, Boisgard R, Guillermet S et al (2016) Multimodal in vivo imaging of tumorigenesis and response to chemotherapy in a transgenic mouse model of mammary cancer. Mol Imaging Biol 18:617–626CrossRefPubMedGoogle Scholar
  21. 21.
    Schlaepfer IR, Glode LM, Hitz CA et al (2015) Inhibition of lipid oxidation increases glucose metabolism and enhances 2-deoxy-2-[(18)F]Fluoro-D-glucose uptake in prostate cancer mouse xenografts. Mol Imaging Biol 17:529–538CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Campbell MJ, Hamilton B, Shoemaker M et al (2002) Antiproliferative activity of Chinese medicinal herbs on breast cancer cells in vitro. Anticancer Res 22:3843–3852PubMedGoogle Scholar
  23. 23.
    Powell CB, Fung P, Jackson J et al (2003) Aqueous extract of herba Scutellaria barbatae, a chinese herb used for ovarian cancer, induces apoptosis of ovarian cancer cell lines. Gynecol Oncol 91:332–340CrossRefPubMedGoogle Scholar
  24. 24.
    Pasquier E, Ciccolini J, Carre M et al (2011) Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2:797–809CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shah C, Miller TW, Wyatt SK et al (2009) Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer. Clin Cancer Res 15:4712–4721CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang H, Song F, Xu C et al (2015) Spatiotemporal PET imaging of dynamic metabolic changes after therapeutic approaches of induced pluripotent stem cells, neuronal stem cells, and a Chinese patent medicine in stroke. J Nucl Med 56:1774–1779CrossRefPubMedGoogle Scholar
  27. 27.
    Prat A, Pineda E, Adamo B et al (2015) Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24(Suppl 2):S26–S35CrossRefPubMedGoogle Scholar
  28. 28.
    Palma G, Frasci G, Chirico A et al (2015) Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget 6:26560–26574CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Boso V, Herrero MJ, Santaballa A et al (2014) SNPs and taxane toxicity in breast cancer patients. Pharmacogenomics 15:1845–1858CrossRefPubMedGoogle Scholar
  30. 30.
    Gutierrez MC, Detre S, Johnston S et al (2005) Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol 23:2469–2476CrossRefPubMedGoogle Scholar
  31. 31.
    Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Simoncini T, Hafezi-Moghadam A, Brazil DP et al (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407:538–541CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Campbell RA, Bhat-Nakshatri P, Patel NM et al (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276:9817–9824CrossRefPubMedGoogle Scholar
  34. 34.
    Cai J, Chen S, Zhang W et al (2014) Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway. Phytomedicine 21:1725–1732CrossRefPubMedGoogle Scholar
  35. 35.
    Yan X, Lyu T, Jia N et al (2013) Huaier aqueous extract inhibits ovarian cancer cell motility via the AKT/GSK3beta/beta-catenin pathway. PLoS One 8:e63731CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Korsching E, Jeffrey SS, Meinerz W et al (2008) Basal carcinoma of the breast revisited: an old entity with new interpretations. J Clin Pathol 61:553–560CrossRefPubMedGoogle Scholar
  37. 37.
    Miller TW, Perez-Torres M, Narasanna A et al (2009) Loss of phosphatase and Tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res 69:4192–4201CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Miller TW, Rexer BN, Garrett JT, Arteaga CL (2011) Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res 13:224CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Creighton CJ, Fu X, Hennessy BT et al (2010) Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res 12:R40CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Iurlaro R, Leon-Annicchiarico CL, Munoz-Pinedo C (2014) Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol 542:59–80CrossRefPubMedGoogle Scholar
  41. 41.
    Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899CrossRefPubMedGoogle Scholar
  42. 42.
    Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?—Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19:25–31CrossRefPubMedGoogle Scholar
  43. 43.
    Lemons JM, Feng XJ, Bennett BD et al (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8:e1000514CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 97:9226–9233CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  • Yao Chen
    • 1
    • 2
    • 3
    • 4
  • Ling Wang
    • 1
    • 2
    • 3
    • 4
  • Hao Liu
    • 1
    • 2
    • 3
    • 4
  • Fahuan Song
    • 1
    • 2
    • 3
    • 4
  • Caiyun Xu
    • 1
    • 2
    • 3
    • 4
  • Kai Zhang
    • 1
    • 2
    • 3
    • 4
  • Qing Chen
    • 1
    • 2
    • 3
    • 4
  • Shuang Wu
    • 1
    • 2
    • 3
    • 4
  • Yunqi Zhu
    • 1
    • 2
    • 3
    • 4
  • Ying Dong
    • 5
  • Min Zhou
    • 1
    • 2
    • 3
    • 4
    • 6
  • Hong Zhang
    • 1
    • 2
    • 3
    • 4
  • Mei Tian
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Nuclear MedicineThe Second Hospital of Zhejiang University School of MedicineHangzhouChina
  2. 2.Zhejiang University Medical PET CenterZhejiang UniversityHangzhouChina
  3. 3.Institute of Nuclear Medicine and Molecular ImagingZhejiang UniversityHangzhouChina
  4. 4.Key Laboratory of Medical Molecular Imaging of Zhejiang ProvinceHangzhouChina
  5. 5.Department of OncologyThe Second Hospital of Zhejiang University School of MedicineHangzhouChina
  6. 6.Institute of Translational MedicineZhejiang UniversityHangzhouChina

Personalised recommendations