Skip to main content

Advertisement

Log in

Phage Display Selection, In Vitro Characterization, and Correlative PET Imaging of a Novel HER3 Peptide

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

HER3 (ERBB3) is a receptor tyrosine kinase that is implicated in treatment resistance across multiple cancers, including those of the breast, lung, and prostate. Overexpression of HER3 following targeted therapy can occur rapidly and heterogeneously both within a single lesion and across sites of metastasis, making protein quantification by biopsy highly challenging. A global, non-invasive methodology such as positron emission tomography (PET) imaging can permit serial quantification of HER3, providing a useful approach to monitor HER3 expression across the entire tumor burden both prior to and following treatment. PET imaging of HER3 expression may permit a more personalized approach to targeted therapy by allowing for detection of HER3-mediated resistance, in addition to informing clinical trial patient selection for novel therapies targeting HER3.

Procedures

Phage display selection targeting the HER3 extracellular domain was performed in order to develop a peptide with optimal blood clearance and highly accurate HER3 quantification.

Results

The selection converged to a consensus peptide sequence that was subsequently found to bind HER3 with an affinity of 270 ± 151 nM. The peptide, termed HER3P1, was bound with high selectivity to HER3 over other similar receptor tyrosine kinases such as EGFR and HER2. Furthermore, HER3P1 was able to distinguish between high and low HER3-expressing cells in vitro. The peptide was radiolabeled with Ga-68 and demonstrated to specifically bind HER3 by in vivo PET imaging. Uptake of [68Ga]HER3P1 was highly specific for HER3-positive tumors, with tumor-to-background ratios ranging from 1.59–3.32, compared to those of HER3-negative tumors, ranging from 0.84–0.93. The uptake of [68Ga]HER3P1 also demonstrated high (P < 0.001) correlation with protein expression as quantified by Western blot and confirmed by biodistribution.

Conclusions

HER3P1 accurately quantifies expression of HER3 by PET imaging and has potential utility as a clinical imaging agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Herbst RS, Prager D, Hermann R et al (2005) TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 23:5892–5899

    Article  CAS  PubMed  Google Scholar 

  2. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  CAS  PubMed  Google Scholar 

  4. Sergina NV, Rausch M, Wang D et al (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445:437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chandarlapaty S (2012) Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discov 2:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  CAS  PubMed  Google Scholar 

  7. Yarden Y (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127

    Article  CAS  PubMed  Google Scholar 

  8. Ferguson KM, Darling PJ, Mohan MJ et al (2000) Extracellular domains drive homo- but not hetero-dimerization of erbB receptors. EMBO J 19:4632–4643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  10. Franklin MC, Carey KD, Vajdos FF et al (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5:317–328

    Article  CAS  PubMed  Google Scholar 

  11. Shi F, Telesco SE, Liu Y et al (2010) ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A 107:7692–7697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakrabarty A, Sánchez V, Kuba MG et al (2012) Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Natl Acad Sci U S A 109:2718–2723

    Article  CAS  PubMed  Google Scholar 

  13. Soler M, Mancini F, Meca-Cortés Ó et al (2009) HER3 is required for the maintenance of neuregulin-dependent and -independent attributes of malignant progression in prostate cancer cells. Int J Cancer 125:2565–2575

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Siddiqui S, Bose S et al (2010) Nrdp1-mediated regulation of ErbB3 expression by the androgen receptor in androgen-dependent but not castrate-resistant prostate cancer cells. Cancer Res 70:5994–6003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lidke DS, Nagy P, Heintzmann R et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotech 22:198–203

    Article  CAS  Google Scholar 

  16. Heidari P, Wehrenberg-Klee E, Habibollahi P et al (2013) Free somatostatin receptor fraction predicts the antiproliferative effect of octreotide in a neuroendocrine tumor model: implications for dose optimization. Cancer Res 73:6865–6873

    Article  CAS  PubMed  Google Scholar 

  17. Fischman AJ, Babich JW, Strauss HW (1993) A ticket to ride: peptide radiopharmaceuticals. J Nucl Med 34:2253–2263

    CAS  PubMed  Google Scholar 

  18. Hofmann M, Maecke H, Börner A et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med Mol Imaging 28:1751–1757

    Article  CAS  Google Scholar 

  19. Poeppel TD, Binse I, Petersenn S et al (2011) 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52:1864–1870

    Article  CAS  PubMed  Google Scholar 

  20. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  21. Karasseva NG, Glinsky VV, Chen NX et al (2002) Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. J Prot Chem 21:287–296

    Article  CAS  Google Scholar 

  22. Larimer BM, Thomas WD, Smith GP, Deutscher SL (2014) Affinity maturation of an ERBB2-targeted SPECT imaging peptide by in vivo phage display. Mol Imaging Biol 16:449–458

    Article  PubMed  Google Scholar 

  23. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  CAS  PubMed  Google Scholar 

  24. Larimer BM, Deutscher SL (2014) Development of a peptide by phage display for SPECT imaging of resistance-susceptible breast cancer. Am J Nuc Med Mol Imaging 4:435

    Google Scholar 

  25. Wakui H, Yamamoto N, Nakamichi S et al (2014) Phase 1 and dose-finding study of patritumab (U3-1287), a human monoclonal antibody targeting HER3, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 73:511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deutscher SL (2010) Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110:3196–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thomas WD, Golomb M, Smith GP (2010) Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures. Anal Biochem 407:237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lockhart AC, Liu Y, Dehdashti F et al (2016) Phase 1 evaluation of [64Cu]DOTA-patritumab to assess dosimetry, apparent receptor occupancy, and safety in subjects with advanced solid tumors. Mol Imaging Biol 18:446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wehrenberg-Klee E, Turker NS, Heidari P et al (2016) Differential receptor tyrosine kinase PET imaging for therapeutic guidance. J Nucl Med 57:1413–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Da Pieve C, Allott L, Martins CD et al (2016) Efficient [18F]AlF radiolabeling of ZHER3:8698 affibody molecule for imaging of HER3 positive tumors. Bioconjug Chem 27:1839–1849

    Article  PubMed  Google Scholar 

  31. Wang M, Gao M, Zheng Q-H (2014) The first radiosynthesis of [11 C] AZD8931 as a new potential PET agent for imaging of EGFR, HER2 and HER3 signaling. Bioorg Med Chem Lett 24:4455–4459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Emily Bloch, Sarah Nesti, and Catharina Dekker for technical assistance and manuscript preparation. Funding provided by a Department of Defense Prostate Cancer Research Postdoctoral Training Award W81XWH-16-1-0447 and a Department of Defense Prostate Cancer Synergistic Idea Development Award W81XWH-14-1-0406.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin M. Larimer or Umar Mahmood.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larimer, B.M., Phelan, N., Wehrenberg-Klee, E. et al. Phage Display Selection, In Vitro Characterization, and Correlative PET Imaging of a Novel HER3 Peptide. Mol Imaging Biol 20, 300–308 (2018). https://doi.org/10.1007/s11307-017-1106-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1106-6

Key words

Navigation