Abstract
Magnetic particle imaging (MPI) is a new molecular imaging technique that directly images superparamagnetic tracers with high image contrast and sensitivity approaching nuclear medicine techniques—but without ionizing radiation. Since its inception, the MPI research field has quickly progressed in imaging theory, hardware, tracer design, and biomedical applications. Here, we describe the history and field of MPI, outline pressing challenges to MPI technology and clinical translation, highlight unique applications in MPI, and describe the role of the WMIS MPI Interest Group in collaboratively advancing MPI as a molecular imaging technique. We invite interested investigators to join the MPI Interest Group and contribute new insights and innovations to the MPI field.
This is a preview of subscription content, access via your institution.


References
- 1.
Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM (2013) Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging 32:338–347
- 2.
Lu K, Goodwill P, Zheng B, Conolly S (2015) Reshaping the 2D MPI PSF to be isotropic and sharp using vector acquisition and equalization. In: 2015 5th International Workshop on Magnetic Particle Imaging (IWMPI). IEEE, pp 1–1
- 3.
Zhang W, Zheng B, Goodwill P, Conolly S (2015) A custom low-noise preamplifier for magnetic particle imaging. In: 2015 5th International Workshop on Magnetic Particle Imaging (IWMPI). pp 1–1
- 4.
Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217
- 5.
Goodwill PW, Conolly SM (2010) The x-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 29:1851–1859
- 6.
Weizenecker J, Gleich B, Rahmer J et al (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10
- 7.
Neuwelt E a, Hamilton BE, Varallyay CG et al (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75:465–474
- 8.
Lu M, Cohen MH, Rieves D, Pazdur R (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85:315–319
- 9.
Spinowitz BS, Kausz AT, Baptista J et al (2008) Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol 19:1599–1605
- 10.
Vasanawala SS, Nguyen K-L, Hope MD et al (2016) Safety and technique of ferumoxytol administration for MRI. Magn Reson Med 75:2107–2111
- 11.
Antoch G, Freudenberg LS, Beyer T et al (2004) To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med 45(Suppl 1):56S–65S
- 12.
Gleich B, Weizenecker J, Borgert J (2008) Experimental results on fast 2D-encoded magnetic particle imaging. Phys Med Biol 53:N81–N84
- 13.
Goodwill PW, Scott GC, Stang PP, Conolly SM (2009) Narrowband magnetic particle imaging. IEEE Trans Med Imaging 28:1231–1237
- 14.
Goodwill PW, Lu K, Zheng B, Conolly SM (2012) An x-space magnetic particle imaging scanner. Rev Sci Instrum 83:033708
- 15.
Vogel P, Ruckert MA, Klauer P et al (2014) Traveling wave magnetic particle imaging. IEEE Trans Med Imaging 33:400–407
- 16.
Saritas EU, Goodwill PW, Croft LR et al (2013) Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson 229:116–126
- 17.
Rahmer J, Weizenecker J, Gleich B, Borgert J (2009) Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging 9:4
- 18.
Goodwill PW, Conolly SM (2011) Multidimensional x-space magnetic particle imaging. IEEE Trans Med Imaging 30:1581–1590
- 19.
Goodwill PW, Konkle JJ, Zheng B et al (2012) Projection x-space magnetic particle imaging. IEEE Trans Med Imaging 31:1076–1085
- 20.
Konkle JJ, Goodwill PW, Hensley DW et al (2015) A convex formulation for magnetic particle imaging x-space reconstruction. PLoS One 10:e0140137
- 21.
Ferguson RM, Khandhar AP, Kemp SJ et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34:1077–1084
- 22.
Ferguson RM, Khandhar AP, Krishnan KM (2012) Tracer design for magnetic particle imaging (invited). J Appl Phys 111:7B318–7B3185.
- 23.
Rahmer J, Antonelli A, Sfara C et al (2013) Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection. Phys Med Biol 58:3965–3977
- 24.
Zheng B, Vazin T, Goodwill PW et al (2015) Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep 5:14055
- 25.
Zheng B, von See MP, Yu E et al (2016) Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 6:291–301
- 26.
Vogel P, Rückert MA, Klauer P et al (2016) First in vivo traveling wave magnetic particle imaging of a beating mouse heart. Phys Med Biol 61:6620–6634
- 27.
Saritas EU, Goodwill PW, Zhang GZ, Conolly SM (2013) Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging 32:1600–1610
- 28.
Saritas EU, Goodwill PW, Conolly SM (2015) Effects of pulse duration on magnetostimulation thresholds. Med Phys 42:3005–3012
- 29.
Schmale I, Gleich B, Schmidt J, et al. (2013) Human PNS and SAR study in the frequency range from 24 to 162 kHz. In: 2013 International Workshop on Magnetic Particle Imaging (IWMPI). ieeexplore.ieee.org, pp 1–1
- 30.
Borgert J, Schmidt JD, Schmale I et al (2013) Perspectives on clinical magnetic particle imaging. Biomed Tech 58:551–556
- 31.
Yu EY, Bishop M, Zheng B et al (2017) Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. doi:10.1021/acs.nanolett.6b04865
- 32.
Zhou XY, Jeffris K, Yu E et al (2017) First in vivo magnetic particle imaging of lung perfusion in rats. Phys Med Biol. doi:10.1088/1361-6560/aa616c
- 33.
Lu K, Goodwill PW, Saritas EU et al (2013) Linearity and shift invariance for quantitative magnetic particle imaging. IEEE Trans Med Imaging 32:1565–1575
- 34.
Konkle JJ, Goodwill PW, Saritas EU et al (2013) Twenty-fold acceleration of 3D projection reconstruction MPI. Biomed Tech 58:565–576
- 35.
Wawrzik T, Kuhlmann C, Ludwig F, Schilling M (2013) Scanner setup and reconstruction for three-dimensional magnetic particle imaging. In: Weaver JB, Molthen RC (eds) SPIE medical imaging. International Society for Optics and Photonics, p 86721B–86721B–8
- 36.
Buzug TM, Bringout G, Erbe M et al (2012) Magnetic particle imaging: introduction to imaging and hardware realization. Z Med Phys 22:323–334
- 37.
Murase K, Hiratsuka S, Song R, Takeuchi Y (2014) Development of a system for magnetic particle imaging using neodymium magnets and gradiometer. Jpn J Appl Phys 53:067001
- 38.
Panagiotopoulos N, Duschka RL, Ahlborg M et al (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 10:3097–3114
- 39.
Yu E, Goodwill P, Tay ZW, et al (2016) In vivo projection imaging and 3D computed tomography magnetic particle imaging with a high resolution 6 T/m field free line electromagnet. Proceedings of world molecular imaging congress 2016
- 40.
Nguyen PK, Riegler J, Wu JC (2014) Stem cell imaging: from bench to bedside. Cell Stem Cell 14:431–444
- 41.
MPI - Bruker’s revolutionary modality for preclinical imaging. In: Bruker Biospin. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/PreclinicalImaging/Brochures/MPI-PreClinical-Brochure.pdf. Accessed 24 Jan 2017
- 42.
MOMENTUM™ Imager Magnetic Particle Imaging System. In: Magnetic Insight. http://www.magneticinsight.com/momentum-imager/. Accessed 24 Jan 2017
- 43.
Schmale I, Gleich B, Kanzenbach J, et al (2009) An introduction to the hardware of magnetic particle imaging. In: World congress on medical physics and biomedical engineering, September 7–12, 2009, Munich, Germany. Springer Berlin Heidelberg, pp 450–453
- 44.
Schmale I, Gleich B, Borgert J, Weizenecker J (2010) JFET noise modelling for MPI receivers. Proceedings of IWMPI 148–153.
- 45.
Khandhar AP, Keselman P, Kemp SJ et al (2017) Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nano 9:1299–1306
- 46.
Bulte JWM, Walczak P, Janowski M et al (2015) Quantitative “hot spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging (MPI). Tomography 1:91–97
- 47.
Croft LR, Goodwill PW, Conolly SM (2012) Relaxation in x-space magnetic particle imaging. IEEE Trans Med Imaging 31:2335–2342
- 48.
Croft LR, Goodwill PW, Konkle JJ et al (2016) Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys 43:424–435
- 49.
Rahmer J, Halkola A, Gleich B et al (2015) First experimental evidence of the feasibility of multi-color magnetic particle imaging. Phys Med Biol 60:1775–1791
- 50.
Hensley D, Goodwill P, Croft L, Conolly S (2015) Preliminary experimental x-space color MPI. In: 2015 5th International Workshop on Magnetic Particle Imaging (IWMPI). pp 1–1
- 51.
Hensley DW, Tay ZW, Dhavalikar R et al (2016) Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys Med Biol. doi:10.1088/1361-6560/aa5601
- 52.
Bauer LM, Situ SF, Griswold MA, Samia ACS (2016) High-performance iron oxide nanoparticles for magnetic particle imaging—guided hyperthermia (hMPI). Nano 8:12162–12169
- 53.
Kuboyabu T, Yamawaki M, Aoki M, et al (2016) Quantitative evaluation of tumor early response to magnetic hyperthermia combined with vascular disrupting therapy using magnetic particle imaging. Int J Nanomed Nanosurg 2. doi 10.16966/2470-3206.114
- 54.
Keselman P, Yu E, Zhou X et al (2017) Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging. Phys Med Biol. doi:10.1088/1361-6560/aa5f48
Acknowledgments
We are grateful for funding support from the Keck Foundation Grant 009323, NIH 1R01EB019458, NIH 1R24MH106053, and a UC Discovery Grant.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
PWG and SMC are founders of Magnetic Insight. PWG, DWH, and JJK are employees of Magnetic Insight.
Rights and permissions
About this article
Cite this article
Zheng, B., Yu, E., Orendorff, R. et al. Seeing SPIOs Directly In Vivo with Magnetic Particle Imaging. Mol Imaging Biol 19, 385–390 (2017). https://doi.org/10.1007/s11307-017-1081-y
Published:
Issue Date:
Key words
- Magnetic particle imaging
- Superparamagnetic iron oxide
- Interest group