Molecular Imaging and Biology

, Volume 19, Issue 3, pp 373–378 | Cite as

Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging

Special Topic

Abstract

Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

Key words

Synthetic biology Imaging Reporter genes 

Notes

Acknowledgements

We thank the members of the Shapiro and Gilad labs and the founding members of the Synthetic Biology and Reporter Genes (SyBRG) interest group of the World Molecular Imaging Society for their contributions to this field and the ideas presented in this article. In addition to the authors, founding members of SyBRG include Christopher Contag, Michal Neeman, Roger Tsien, David Piwnica-Worms, Michael Lin, Daniel Turnbull, Stuart Foster, Michael McMahon, Jeff Bulte, Brian Rutt, Vladimir Ponomarev, Erik Shapiro, Alan Jasanoff, Jeffrey Cirillo, Vasilis Ntziachristos, Jianghong Rao, Moriel Vandsburger, Gil Westmeyer, Brian Chow, and Il Minn. We also note with regret that, due to space limitations, we were not able to cite all the relevant work in this field and instead reference a smaller number of examples.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev MicrobiolGoogle Scholar
  2. 2.
    Petrone J (2016) DNA writers attract investors. Nat Biotech 34:363–364CrossRefGoogle Scholar
  3. 3.
    Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333:1248–1252CrossRefPubMedGoogle Scholar
  4. 4.
    Slomovic S, Pardee K, Collins JJ (2015) Synthetic biology devices for in vitro and in vivo diagnostics. Proceedings of the National Academy of Sciences 112:14429–14435Google Scholar
  5. 5.
    Fischbach MA, Bluestone JA, Lim WA (2013) Cell-based therapeutics: the next pillar of medicine. Sci Transl Med 5:179ps177CrossRefGoogle Scholar
  6. 6.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yurist-Doutsch S, Arrieta M-C, Vogt SL, Finlay BB (2014) Gastrointestinal microbiota-mediated control of enteric pathogens. Annu Rev Genet 48:361–382CrossRefPubMedGoogle Scholar
  8. 8.
    Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38:1–12CrossRefPubMedGoogle Scholar
  10. 10.
    Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469-1480–1469e1412CrossRefGoogle Scholar
  11. 11.
    Danino T, Prindle A, Kwong GA et al (2015) Programmable probiotics for detection of cancer in urine. Sci Transl Med 7:289ra284CrossRefGoogle Scholar
  12. 12.
    Kotula JW, Kerns SJ, Shaket LA, et al. (2014) Programmable bacteria detect and record an environmental signal in the mammalian gut. Proceedings of the National Academy of Sciences 111:4838–4843Google Scholar
  13. 13.
    Archer EJ, Robinson AB, Süel GM (2012) Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth Biol 1:451–457CrossRefPubMedGoogle Scholar
  14. 14.
    Claesen J, Fischbach MA (2014) Synthetic microbes as drug delivery systems. ACS Synth Biol 4:358–364CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362CrossRefPubMedGoogle Scholar
  16. 16.
    Din MO, Danino T, Prindle A et al (2016) Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536:81–85CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat Biotech 31:448–452CrossRefGoogle Scholar
  18. 18.
    Lienert F, Lohmueller JJ, Garg A, Silver PA (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15:95–107CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68CrossRefPubMedGoogle Scholar
  20. 20.
    Klebanoff CA, Rosenberg SA, Restifo NP (2016) Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med 22:26–36CrossRefPubMedGoogle Scholar
  21. 21.
    Roybal KT, Rupp LJ, Morsut L et al (2016) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164:770–779CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fedorov VD, Themeli M, Sadelain M (2013) PD-1–and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5:215ra172CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  24. 24.
    Todhunter ME, Jee NY, Hughes AJ et al (2015) Programmed synthesis of three-dimensional tissues. Nat Meth 12:975–981CrossRefGoogle Scholar
  25. 25.
    Sellmyer MA, Bronsart L, Imoto H, Contag CH, Wandless TJ, Prescher JA (2013) Visualizing cellular interactions with a generalized proximity reporter. Proc Natl Acad Sci U S A 110:8567–8572CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ye H, Baba MD-E, Peng R-W, Fussenegger M (2011) A synthetic Optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332:1565–1568CrossRefPubMedGoogle Scholar
  27. 27.
    Kemmer C, Gitzinger M, Daoud-El Baba M, Djonov V, Stelling J, Fussenegger M (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotech 28:355–360CrossRefGoogle Scholar
  28. 28.
    Ni Q, Ganesan A, Aye-Han NN et al (2011) Signaling diversity of PKA achieved via a Ca2 + −cAMP-PKA oscillatory circuit. Nat Chem Biol 7:34–40CrossRefPubMedGoogle Scholar
  29. 29.
    Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotech 32:347–355CrossRefGoogle Scholar
  31. 31.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805CrossRefPubMedGoogle Scholar
  32. 32.
    Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572CrossRefPubMedGoogle Scholar
  33. 33.
    Gross S, Piwnica-Worms D (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7:5–15PubMedGoogle Scholar
  34. 34.
    Zhao H, Doyle TC, Wong RJ et al (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging 3:43–54CrossRefPubMedGoogle Scholar
  35. 35.
    Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260CrossRefPubMedGoogle Scholar
  36. 36.
    Prescher JA, Contag CH (2010) Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 14:80–89CrossRefPubMedGoogle Scholar
  37. 37.
    Tjuvajev JG, Stockhammer G, Desai R et al (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132PubMedGoogle Scholar
  38. 38.
    Gambhir SS, Barrio JR, Phelps ME et al (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A 96:2333–2338CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Koretsky AP, Brosnan MJ, Chen LH, Chen JD, Van Dyke T (1990) NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci U S A 87:3112–3116CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotech 18:321–325CrossRefGoogle Scholar
  41. 41.
    Cohen B, Dafni H, Meir G, Harmelin A, Neeman M (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7:109–117CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454CrossRefPubMedGoogle Scholar
  43. 43.
    Deans AE, Wadghiri YZ, Bernas LM, Yu X, Rutt BK, Turnbull DH (2006) Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med 56:51–59CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Airan RD, Bar-Shir A, Liu G et al (2012) MRI biosensor for protein kinase a encoded by a single synthetic gene. Magn Reson Med 68:1919–1923CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bar-Shir A, Liu G, Liang Y et al (2013) Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression. J Am Chem Soc 135:1617–1624CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gilad AA, McMahon MT, Walczak P et al (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25:217–219CrossRefPubMedGoogle Scholar
  47. 47.
    Bar-Shir A, Liu G, Chan KW et al (2014) Human protamine-1 as an MRI reporter gene based on chemical exchange. ACS Chem Biol 9:134–138CrossRefPubMedGoogle Scholar
  48. 48.
    Liu G, Liang Y, Bar-Shir A et al (2011) Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. J Am Chem Soc 133:16326–16329CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bar-Shir A, Liu G, Greenberg MM, Bulte JWM, Gilad AA (2013) Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nat Protocols 8:2380–2391CrossRefPubMedGoogle Scholar
  50. 50.
    Patrick PS, Rodrigues TB, Kettunen MI, Lyons SK, Neves AA, Brindle KM (2015) Development of Timd2 as a reporter gene for MRI. Magnetic resonance in medicineGoogle Scholar
  51. 51.
    Shapiro MG, Ramirez RM, Sperling LJ et al (2014) Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nature Chem 6:629–634CrossRefGoogle Scholar
  52. 52.
    Wang Y, Roose BW, Palovcak EJ, Carnevale V, Dmochowski IJ (2016) A genetically encoded β-lactamase reporter for ultrasensitive 129Xe NMR in mammalian cells. Angew Chem Int Ed 55:8984–8987CrossRefGoogle Scholar
  53. 53.
    Mukherjee A, Wu D, Davis HC, Shapiro MG (2016) Non-invasive imaging using reporter genes altering cellular water permeability. Nat Commun 7:13891CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Schilling F, Ros S, Hu D-E, et al. (2016) MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat Biotech advance online publicationGoogle Scholar
  55. 55.
    Desai M, Slusarczyk AL, Chapin A, Barch M, Jasanoff A (2016) Molecular imaging with engineered physiology. Nat Commun 7:13607CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kircher MF, Gambhir SS, Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8:677–688CrossRefPubMedGoogle Scholar
  57. 57.
    Bar-Shir A, Bulte JW, Gilad AA (2015) Molecular Engineering of Nonmetallic Biosensors for CEST MRI. ACS Chem BiolGoogle Scholar
  58. 58.
    Srivastava AK, Kadayakkara DK, Bar-Shir A, Gilad AA, McMahon MT, Bulte JW (2015) Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech 8:323–336CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yaghoubi SS, Jensen MC, Satyamurthy N et al (2009) Noninvasive detection of therapeutic cytolytic T cells with 18F–FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6:53–58CrossRefPubMedGoogle Scholar
  60. 60.
    Gambhir S, Herschman H, Cherry SR et al (2000) Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2:118–138CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Smith-Bindman R, Miglioretti DL, Johnson E et al (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010. JAMA 307:2400–2409CrossRefPubMedGoogle Scholar
  62. 62.
    Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26:1–27CrossRefPubMedGoogle Scholar
  63. 63.
    Foster FS, Lockwood G, Ryan L, Harasiewicz K, Berube L, Rauth A (1993) Principles and applications of ultrasound backscatter microscopy. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 40:608–617CrossRefGoogle Scholar
  64. 64.
    Errico C, Pierre J, Pezet S et al (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527:499–502CrossRefPubMedGoogle Scholar
  65. 65.
    Shapiro MG, Goodwill PW, Neogy A et al (2014) Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol 9:311–316CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lakshmanan A, Farhadi A, Nety SP et al (2016) Molecular engineering of acoustic protein nanostructures. ACS Nano 10:7314–7322CrossRefPubMedGoogle Scholar
  67. 67.
    Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Taruttis A, Ntziachristos V (2015) Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics 9:219–227CrossRefGoogle Scholar
  69. 69.
    Yao J, Kaberniuk AA, Li L et al (2016) Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Methods 13:67–73PubMedGoogle Scholar
  70. 70.
    Jiang Y, Sigmund F, Reber J, et al. (2015) Violacein as a genetically-controlled, enzymatically amplified and photobleaching-resistant chromophore for optoacoustic bacterial imaging. Scientific reports 5Google Scholar
  71. 71.
    Deán-Ben XL, Sela G, Lauri A et al (2016) Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light: Science & Applications 5:e16201CrossRefGoogle Scholar
  72. 72.
    Lin MZ, Schnitzer MJ (2016) Genetically encoded indicators of neuronal activity. Nat Neurosci 19:1142–1153CrossRefPubMedGoogle Scholar
  73. 73.
    Shapiro MG, Westmeyer GG, Romero PA et al (2010) Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat Biotechnol 28:264–270CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Deckers R, Quesson B, Arsaut J, Eimer S, Couillaud F, Moonen CT (2009) Image-guided, noninvasive, spatiotemporal control of gene expression. Proceedings of the National Academy of Sciences 106:1175–1180Google Scholar
  75. 75.
    Piraner DI, Abedi MH, Moser BA, Lee-Gosselin A, Shapiro MG (2017) Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat Chem Biol 13:75–80CrossRefPubMedGoogle Scholar
  76. 76.
    Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5:602–606CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  1. 1.The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Cellular Imaging Section and Vascular Biology Program, Institute for Cell EngineeringThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreUSA
  4. 4.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Heritage Medical Research InstituteCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations