Molecular Imaging and Biology

, Volume 19, Issue 3, pp 363–372 | Cite as

Molecular Imaging in Nanotechnology and Theranostics

  • Chrysafis Andreou
  • Suchetan Pal
  • Lara Rotter
  • Jiang Yang
  • Moritz F. KircherEmail author
Special Topic


The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The “Molecular Imaging in Nanotechnology and Theranostics” (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3–5 years, in order to provide the reader with an intuition of what is “in the pipeline” and has potential for clinical translation in the near future.

Key words

Nanoparticles Imaging Theranostic WMIS MINT 



We would like to thank the investigators who joined us as Founding Members of the MINT interest group for their valuable contribution to the field. Namely, Silvio Aime, James Basilion, Michelle Bradbury, Heike Daldrup-Link, Katherine Ferrara, Sam Gambir, Jan Grimm, Jesse Jokerst, Kimberly Kelly, Fabian Kiessling, Twan Lammers, Jonathan Liu, Matthias Nahrendorf, Vasilis Ntziachristos, Manuel Perez, Bernd Pichler, Mikhail G. Shapiro, Andrew Tsourkas, and Ralph Weissleder. The following funding sources (to M.F.K.) are acknowledged: NIH R01 EB017748 and K08 CA16396; M.F.K. is a Damon Runyon-Rachleff Innovator supported (in part) by the Damon Runyon Cancer Research Foundation (DRR-29-14); Pershing Square Sohn Prize by the Pershing Square Sohn Cancer Research Alliance; MSKCC Center for Molecular Imaging & Nanotechnology (CMINT) Grant; MSKCC Technology Development Grant; Mr. William H. and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research and The Experimental Therapeutics Center of Memorial Sloan Kettering Cancer Center. Acknowledgements are also extended to the grant-funding support provided by the MSKCC NIH Core Grant (P30-CA008748).

Compliance with Ethical Standards

Conflict of Interest

M.F.K. is an inventor on several pending patents related to Raman nanoparticles, Raman detection, and theranostic hardware, as well as radiolabeling of silica particles, and is a cofounder of RIO Imaging, Inc., a startup company that has licensed several of these patents.


  1. 1.
    Bobo D, Robinson KJ, Islam J et al (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387PubMedCrossRefGoogle Scholar
  2. 2.
    Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Translational Med 1:10–29CrossRefGoogle Scholar
  3. 3.
    Stylianopoulos T (2016) Intelligent drug delivery systems for the treatment of solid tumors. Eur J Nanomed 8:9–16CrossRefGoogle Scholar
  4. 4.
    Kircher MF, Willmann JK (2012) Molecular body imaging: MR imaging, CT, and US. Part II. Applications. Radiology 264:349–368PubMedCrossRefGoogle Scholar
  5. 5.
    Kircher MF, Willmann JK (2012) Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 263:633–643PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41:884–898PubMedCrossRefGoogle Scholar
  7. 7.
    Gaglia JL, Harisinghani M, Aganj I et al (2015) Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc Natl Acad Sci U S A 112:2139–2144PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kirschbaum K, Sonner JK, Zeller MW et al (2016) In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A 113:13227–13232PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Deng L, Stafford JH, Liu SC et al (2016) SDF-1 blockade enhances anti-VEGF therapy of glioblastoma and can be monitored by MRI. Neoplasia 19:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bryant LH Jr, Kim SJ, Hobson M et al (2016) Physicochemical characterization of ferumoxytol, heparin and protamine nanocomplexes for improved magnetic labeling of stem cells. Nanomedicine. doi: 10.1016/j.nano.2016.07.011 PubMedGoogle Scholar
  11. 11.
    Klenk C, Gawande R, Uslu L et al (2014) Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 15:275–285PubMedCrossRefGoogle Scholar
  12. 12.
    Zanganeh S, Hutter G, Spitler R et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nano 11:986–994CrossRefGoogle Scholar
  13. 13.
    Pratt EC, Shaffer TM, Grimm J (2016) Nanoparticles and radiotracers: advances toward radionanomedicine. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology 8:872–890PubMedCrossRefGoogle Scholar
  14. 14.
    Lee DS, Im H-J, Lee Y-S (2015) Radionanomedicine: widened perspectives of molecular theragnosis. Nanomedicine: Nanotechnology, Bio Med 11:795–810CrossRefGoogle Scholar
  15. 15.
    Goel S, Chen F, Ehlerding EB, Cai W (2014) Intrinsically radiolabeled nanoparticles: an emerging paradigm. Small 10:3825–3830PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sun X, Huang X, Yan X et al (2014) Chelator-free 64Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy. ACS Nano 8:8438–8446PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhao Y, Sultan D, Detering L et al (2014) Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew Chem Intl Ed 53:156–159CrossRefGoogle Scholar
  18. 18.
    Guo W, Sun X, Jacobson O et al (2015) Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence. ACS Nano 9:488–495PubMedCrossRefGoogle Scholar
  19. 19.
    Sun X, Huang X, Guo J et al (2014) Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J Am Chem Soc 136:1706–1709PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Shaffer TM, Harmsen S, Khwaja E et al (2016) Stable radiolabeling of sulfur-functionalized silica nanoparticles with copper-64. Nano Lett 16:5601–5604PubMedCrossRefGoogle Scholar
  21. 21.
    Pressly ED, Pierce RA, Connal LA et al (2013) Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconj Chem 24:196–204CrossRefGoogle Scholar
  22. 22.
    Gao F, Cai P, Yang W et al (2015) Ultrasmall [64Cu]Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano 9:4976–4986PubMedCrossRefGoogle Scholar
  23. 23.
    Hansen AE, Petersen AL, Henriksen JR et al (2015) Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 9:6985–6995PubMedCrossRefGoogle Scholar
  24. 24.
    Madru R, Tran TA, Axelsson J et al (2014) 68Ga-labeled superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am J Nucl Med Mol Imaging 4:60–69Google Scholar
  25. 25.
    Frigell J, Garcia I, Gomez-Vallejo V, Llop J, Penades S (2014) 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J Am Chem Soc 136:449–457PubMedCrossRefGoogle Scholar
  26. 26.
    Thorek DL, Ulmert D, Diop NF et al (2014) Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun 5:3097PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Shaffer TM, Wall MA, Harmsen S et al (2015) Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. Nano Lett 15:864–868PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zeng J, Jia B, Qiao R et al (2014) In situ 111In-doping for achieving biocompatible and non-leachable 111In-labeled Fe3O4 nanoparticles. Chem Commun 50:2170–2172CrossRefGoogle Scholar
  29. 29.
    Shukla R, Chanda N, Zambre A et al (2012) Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci 109:12426–12431PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Black KCL, Wang Y, Luehmann HP et al (2014) Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 8:4385–4394PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Majmudar MD, Yoo J, Keliher EJ et al (2013) Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res 112:755–61Google Scholar
  32. 32.
    Perez-Medina C, Tang J, Abdel-Atti D et al (2015) PET imaging of tumor-associated macrophages with 89Zr-labeled high-density lipoprotein nanoparticles. J Nucl Med 56:1272–1277PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Keliher EJ, Yoo J, Nahrendorf M et al (2011) 89Zr labeled dextran nanoparticles enable in vivo macrophage imaging. Bioconj Chem 22:2383–2389CrossRefGoogle Scholar
  34. 34.
    Benezra M, Penate-Medina O, Zanzonico PB et al (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121:2768–2780PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Phillips E, Penate-Medina O, Zanzonico PB et al (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6:260ra149–260ra149PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hill TK, Mohs AM (2016) Image-guided tumor surgery: will there be a role for fluorescent nanoparticles? Wiley interdisciplinary reviews Nanomed Nanobiotechnol 8:498–511CrossRefGoogle Scholar
  37. 37.
    Kamila S, McEwan C, Costley D et al (2016) Diagnostic and therapeutic applications of quantum dots in nanomedicine. Top Curr Chem 370:203–224PubMedCrossRefGoogle Scholar
  38. 38.
    Wang Y, Zhou K, Huang G et al (2014) A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat Mater 13:204–212PubMedCrossRefGoogle Scholar
  39. 39.
    Priem B, Tian C, Tang J, Zhao Y, Mulder WJ (2015) Fluorescent nanoparticles for the accurate detection of drug delivery. Expert Opin Drug Deliv 12:1881–1894PubMedCrossRefGoogle Scholar
  40. 40.
    Nune SK, Gunda P, Thallapally PK et al (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6:1175–1194PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wu C, Bull B, Szymanski C et al (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2:2415–2423PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sample V, Newman RH, Zhang J (2009) The structure and function of fluorescent proteins. Chem Soc Rev 38:2852–2864PubMedCrossRefGoogle Scholar
  43. 43.
    Yang J, Zhang Y, Gautam S et al (2009) Development of aliphatic biodegradable photoluminescent polymers. Proc Natl Acad Sci U S A 106:10086–10091PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Zhao Y, Ye M, Chao Q et al (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem 57:517–524PubMedCrossRefGoogle Scholar
  45. 45.
    Yan L, Zhang Y, Xu B, Tian W (2016) Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 8:2471–2487PubMedCrossRefGoogle Scholar
  46. 46.
    Geng J, Zhu Z, Qin W et al (2014) Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging. Nanoscale 6:939–945PubMedCrossRefGoogle Scholar
  47. 47.
    Tummers QR, Hoogstins CE, Peters AA et al (2015) The value of intraoperative near-infrared fluorescence imaging based on enhanced permeability and retention of indocyanine green: feasibility and false-positives in ovarian cancer. PLoS One 10:e0129766PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401PubMedCrossRefGoogle Scholar
  49. 49.
    Andreou C, Kishore SA, Kircher MF (2015) Surface-enhanced Raman spectroscopy: a new modality for cancer imaging. J Nucl Med 56:1295–1299PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Andreou C, Neuschmelting V, Tschaharganeh D-F et al (2016) Imaging of liver tumors using surface-enhanced Raman scattering nanoparticles. ACS Nano 10:5015–5026PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Garai E, Sensarn S, Zavaleta CL et al (2013) High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device. J Biomed Opt 18:096008PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Harmsen S, Huang R, Wall MA et al (2015) Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 7:271ra277CrossRefGoogle Scholar
  53. 53.
    Spaliviero M, Harmsen S, Huang R et al (2016) Detection of lymph node metastases with SERRS nanoparticles. Mol Imaging Biol 18:677–685PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kircher MF, de la Zerda A, Jokerst JV et al (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Harmsen S, Bedics MA, Wall MA et al (2015) Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nat Commun 6:6570PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Huang R, Harmsen S, Samii JM et al (2016) High precision imaging of microscopic spread of glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe. Theranostics 6:1075–1084PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Karabeber H, Huang R, Iacono P et al (2014) Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 8:9755–9766PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Oseledchyk A, Andreou C, Wall MA, Kircher MF (2017) Folate-targeted surface-enhanced resonance Raman scattering nanoprobe Ratiometry for detection of microscopic ovarian cancer. ACS Nano. doi: 10.1021/acsnano.6b06796 PubMedGoogle Scholar
  59. 59.
    Nayak TR, Andreou C, Oseledchyk A et al (2016) Tissue factor-specific ultra-bright SERRS nanostars for Raman detection of pulmonary micrometastases. Nanoscale. doi: 10.1039/C6NR08217C PubMedGoogle Scholar
  60. 60.
    Lemaster JE, Jokerst JV (2016) What is new in nanoparticle-based photoacoustic imaging? Wiley Interdisciplinary Reviews: Nanomed Nanobiotechnol. doi: 10.1002/wnan.1404 Google Scholar
  61. 61.
    Cheheltani R, Ezzibdeh RM, Chhour P et al (2016) Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials 102:87–97PubMedCrossRefGoogle Scholar
  62. 62.
    Cheng X, Sun R, Yin L et al (2016) Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv Mater. doi: 10.1002/adma.201604894 Google Scholar
  63. 63.
    Dixon AJ, Hu S, Klibanov AL, Hossack JA (2015) Oscillatory dynamics and in vivo photoacoustic imaging performance of plasmonic nanoparticle-coated microbubbles. Small 11:3066–3077PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Jing L, Liang X, Deng Z et al (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35:5814–5821PubMedCrossRefGoogle Scholar
  65. 65.
    Liu Y, He J, Yang K et al (2015) Folding up of gold nanoparticle strings into plasmonic vesicles for enhanced photoacoustic imaging. Angew Chem 127:16035–16038CrossRefGoogle Scholar
  66. 66.
    Yang H-W, Liu H-L, Li M-L et al (2013) Magnetic gold-nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 34:5651–5660PubMedCrossRefGoogle Scholar
  67. 67.
    Egusquiaguirre SP, Beziere N, Pedraz JL et al (2015) Optoacoustic imaging enabled biodistribution study of cationic polymeric biodegradable nanoparticles. Contrast Media Mol Imaging 10:421–427PubMedCrossRefGoogle Scholar
  68. 68.
    Jokerst JV, Van de Sompel D, Bohndiek SE, Gambhir SS (2014) Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics 2:119–127PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li K, Liu B (2014) Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 43:6570–6597PubMedCrossRefGoogle Scholar
  70. 70.
    Lu HD, Wilson BK, Heinmiller A et al (2016) Narrow absorption NIR wavelength organic nanoparticles enable multiplexed photoacoustic imaging. ACS Applied Mater Interfaces 8:14379–14388CrossRefGoogle Scholar
  71. 71.
    Xie C, Upputuri PK, Zhen X et al (2017) Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging. Biomaterials 119:1–8PubMedCrossRefGoogle Scholar
  72. 72.
    Yan Y, Yang Q, Wang J et al (2017) Heteropoly blue doped polymer nanoparticles: an efficient theranostic agent for targeted photoacoustic imaging and near-infrared photothermal therapy in vivo. J Mater Chem B 5:382–387CrossRefGoogle Scholar
  73. 73.
    Maji SK, Sreejith S, Joseph J et al (2014) Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Adv Mater 26:5633–5638PubMedCrossRefGoogle Scholar
  74. 74.
    Cai X, Liu X, Liao LD et al (2016) Encapsulated conjugated oligomer nanoparticles for real-time photoacoustic sentinel lymph node imaging and targeted photothermal therapy. Small 12:4873–4880PubMedCrossRefGoogle Scholar
  75. 75.
    Chen Q, Liu X, Zeng J et al (2016) Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials 98:23–30PubMedCrossRefGoogle Scholar
  76. 76.
    Ding K, Zeng J, Jing L et al (2015) Aqueous synthesis of PEGylated copper sulfide nanoparticles for photoacoustic imaging of tumors. Nanoscale 7:11075–11081PubMedCrossRefGoogle Scholar
  77. 77.
    Gao S, Wang G, Qin Z et al (2017) Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials 112:324–335PubMedCrossRefGoogle Scholar
  78. 78.
    Ho I-T, Sessler JL, Gambhir SS, Jokerst JV (2015) Parts per billion detection of uranium with a porphyrinoid-containing nanoparticle and in vivo photoacoustic imaging. Analyst 140:3731–3737PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Jin Y, Li Y, Ma X et al (2014) Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 35:5795–5804PubMedCrossRefGoogle Scholar
  80. 80.
    Ku G, Zhou M, Song S et al (2012) Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6:7489–7496PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Liu R, Jing L, Peng D et al (2015) Manganese (II) chelate functionalized copper sulfide nanoparticles for efficient magnetic resonance/photoacoustic dual-modal imaging guided photothermal therapy. Theranostics 5:1144–1153PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lyu Y, Fang Y, Miao Q et al (2016) Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10:4472–4481PubMedCrossRefGoogle Scholar
  83. 83.
    Pu K, Mei J, Jokerst JV et al (2015) Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adva Mater 27:5184–5190CrossRefGoogle Scholar
  84. 84.
    Pu K, Shuhendler AJ, Jokerst JV et al (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nature Nanotechnol 9:233–239CrossRefGoogle Scholar
  85. 85.
    Sun C, Wen L, Zeng J et al (2016) One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91:81–89PubMedCrossRefGoogle Scholar
  86. 86.
    Tsyboulski DA, Liopo AV, Su R et al (2014) Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography. J Biophotonics 7:581–588PubMedCrossRefGoogle Scholar
  87. 87.
    Yu J, Yang C, Li J et al (2014) Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv Mater 26:4114–4120PubMedCrossRefGoogle Scholar
  88. 88.
    Bogdanov AA Jr, Dixon AJ, Gupta S et al (2016) Synthesis and testing of modular dual-modality nanoparticles for magnetic resonance and multispectral photoacoustic imaging. Bioconjug Chem 27:383–390PubMedCrossRefGoogle Scholar
  89. 89.
    Grootendorst DJ, Jose J, Fratila RM et al (2013) Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging. Contrast Media Mol Imaging 8:83–91PubMedCrossRefGoogle Scholar
  90. 90.
    Xi L, Grobmyer SR, Zhou G et al (2014) Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents. J Biophotonics 7:401–409PubMedCrossRefGoogle Scholar
  91. 91.
    Gurka MK, Pender D, Chuong P et al (2016) Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J Control Release 231:60–67PubMedCrossRefGoogle Scholar
  92. 92.
    Li J, Arnal B, Wei C-W et al (2015) Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging. ACS Nano 9:1964–1976PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Das S, Thorek DLJ, Grimm J (2014) Cerenkov imaging. Adv Cancer Res 124:213–234PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Thorek DL, Riedl CC, Grimm J (2014) Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med 55:95–98PubMedCrossRefGoogle Scholar
  95. 95.
    Czupryna J, Kachur AV, Blankemeyer E et al (2015) Cerenkov-specific contrast agents for detection of pH in vivo. J Nucl Med 56:483–488PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Grootendorst MR, Cariati M, Kothari A et al (2016) Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin Translational Imaging 4:353–366CrossRefGoogle Scholar
  97. 97.
    Kotagiri N, Sudlow G, Akers W, Achilefu S (2015) Depth-independent phototherapy using Cerenkov radiation and titanium dioxide nanoparticles. J Nucl Med 56:643–643Google Scholar
  98. 98.
    Black KCL, Ibricevic A, Gunsten SP et al (2016) In vivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Ĉerenkov imaging. Biomaterials 98:53–63PubMedCrossRefGoogle Scholar
  99. 99.
    Kamkaew A, Cheng L, Goel S et al (2016) Cerenkov radiation induced photodynamic therapy using Chlorin e6-loaded hollow mesoporous silica nanoparticles. ACS Applied Mater Interfaces 8:26630–26637CrossRefGoogle Scholar
  100. 100.
    Lee SB, Ahn SB, Lee SW et al (2016) Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Materials 8:e281CrossRefGoogle Scholar
  101. 101.
    Lee SB, Yoon G, Lee SW et al (2016) Combined positron emission tomography and Cerenkov luminescence imaging of sentinel lymph nodes using PEGylated radionuclide-embedded gold nanoparticles. Small 12:4894–4901PubMedCrossRefGoogle Scholar
  102. 102.
    Hu Z, Qu Y, Wang K et al (2015) In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nature Commun 6:7560CrossRefGoogle Scholar
  103. 103.
    Thorek DL, Ogirala A, Beattie BJ, Grimm J (2013) Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat Med 19:1345–1350PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Xu R, Zhang G, Mai J et al (2016) An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotech 34:414–418CrossRefGoogle Scholar
  105. 105.
    Zhang R, Fan Q, Yang M et al (2015) Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy. Adv Mater 27:5063–5069PubMedCrossRefGoogle Scholar
  106. 106.
    Yan Y, Liu L, Xiong H et al (2016) Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc Natl Acad Sci U S A 113:E5702–E5710PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zheng D, Giljohann DA, Chen DL et al (2012) Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci U S A 109:11975–11980PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Alidori S, Akhavein N, Thorek DLJ et al (2016) Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci Translational Med 8:331ra339CrossRefGoogle Scholar
  109. 109.
    Gobin AM, Lee MH, Halas NJ et al (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934PubMedCrossRefGoogle Scholar
  110. 110.
    Stern JM, Stanfield J, Kabbani W et al (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urology 179:748–753CrossRefGoogle Scholar
  111. 111.
    Schwartz JA, Shetty AM, Price RE et al (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69:1659PubMedCrossRefGoogle Scholar
  112. 112.
    Loo C, Lowery A, Halas N et al (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711PubMedCrossRefGoogle Scholar
  113. 113.
    Cardinal J, Klune JR, Chory E et al (2008) Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery 144:125–132PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Gannon CJ, Patra CR, Bhattacharya R et al (2008) Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnol 6:2CrossRefGoogle Scholar
  115. 115.
    Kotagiri N, Sudlow GP, Akers WJ, Achilefu S (2015) Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat Nano 10:370–379CrossRefGoogle Scholar
  116. 116.
    Idris NM, Gnanasammandhan MK, Zhang J et al (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18:1580–1585PubMedCrossRefGoogle Scholar
  117. 117.
    Maier-Hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324CrossRefGoogle Scholar
  118. 118.
    Johannsen M, Gneveckow U, Taymoorian K et al (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. International J Hyperthermia 23:315–323CrossRefGoogle Scholar
  119. 119.
    van Landeghem FKH, Maier-Hauff K, Jordan A et al (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57PubMedCrossRefGoogle Scholar
  120. 120.
    Hayashi K, Nakamura M, Sakamoto W et al (2013) Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3:366–376PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Jordan A, Scholz R, Maier-Hauff K et al (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neuro-Oncol 78:7–14CrossRefGoogle Scholar
  122. 122.
    Kalber TL, Ordidge KL, Southern P et al (2016) Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 11:1973–1983PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Timbie K, Nance E, Zhang C, et al. (2014) Ultrasound-mediated nanoparticle delivery across the blood-brain barrier (676.17). FASEB J (suppl 676.17) 28Google Scholar
  124. 124.
    Rapoport N, Payne A, Dillon C et al (2013) Focused ultrasound-mediated drug delivery to pancreatic cancer in a mouse model. J Ther Ultrasound 1:11PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Morch Y, Hansen R, Berg S et al (2015) Nanoparticle-stabilized microbubbles for multimodal imaging and drug delivery. Contrast Media Mol Imaging 10:356–366PubMedCrossRefGoogle Scholar
  126. 126.
    Min HS, Son S, You DG et al (2016) Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery. Biomaterials 108:57–70PubMedCrossRefGoogle Scholar
  127. 127.
    Stephan MT, Moon JJ, Um SH et al (2010) Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med 16:1035–1041PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Chen Q, Xu L, Liang C et al (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7:13193PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Fadel TR, Sharp FA, Vudattu N et al (2014) A carbon nanotube–polymer composite for T-cell therapy. Nat Nano 9:639–647CrossRefGoogle Scholar
  130. 130.
    McLaughlin MF, Robertson D, Pevsner PH et al (2014) LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy. Cancer Biother Radiopharmac 29:34–41CrossRefGoogle Scholar
  131. 131.
    McLaughlin MF, Woodward J, Boll RA et al (2013) Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One 8:e54531PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Chen J, Zhu S, Tong L et al (2014) Superparamagnetic iron oxide nanoparticles mediated (131)I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer 14:114–114PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Klutz K, Schaffert D, Willhauck MJ et al (2011) Epidermal growth factor receptor-targeted (131)I-therapy of liver cancer following systemic delivery of the sodium iodide symporter gene. Mol Therapy 19:676–685CrossRefGoogle Scholar
  134. 134.
    Satterlee AB, Yuan H, Huang L (2015) A radio-theranostic nanoparticle with high specific drug loading for cancer therapy and imaging. J Control Release 217:170–182PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Das M, Datir SR, Singh RP, Jain S (2013) Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic acid-multiwalled carbon nanotube conjugate. Mol Pharmac 10:2543–2557CrossRefGoogle Scholar
  136. 136.
    Zhang X-D, Luo Z, Chen J et al (2014) Ultrasmall Au10–12(SG)10–12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv Mater 26:4565–4568PubMedCrossRefGoogle Scholar
  137. 137.
    Al Zaki A, Joh D, Cheng Z et al (2014) Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano 8:104–112PubMedCrossRefGoogle Scholar
  138. 138.
    Hainfeld JF, Smilowitz HM, O'Connor MJ et al (2013) Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomed 8:1601–1609CrossRefGoogle Scholar
  139. 139.
    Popovtzer A, Mizrachi A, Motiei M et al (2016) Actively targeted gold nanoparticles as novel radiosensitizer agents: an in vivo head and neck cancer model. Nanoscale 8:2678–2685PubMedCrossRefGoogle Scholar
  140. 140.
    Liu P, Huang Z, Chen Z et al (2013) Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale 5:11829–11836PubMedCrossRefGoogle Scholar
  141. 141.
    Moeendarbari S, Tekade R, Mulgaonkar A et al (2016) Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Sci Reports 6:20614CrossRefGoogle Scholar
  142. 142.
    Yi X, Yang K, Liang C et al (2015) Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine-131-doped copper sulfide nanoparticles. Adv Functional Mater 25:4689–4699CrossRefGoogle Scholar
  143. 143.
    Chen F, Rieffel J, Chen G et al (2015) Hexamodal imaging in vivo with nanoparticles. J Nucl Med 56:56–56CrossRefGoogle Scholar
  144. 144.
    Rieffel J, Chen F, Kim J et al (2015) Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27:1785–1790PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Conde J, Oliva N, Zhang Y, Artzi N (2016) Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat Mater 15:1128–1138PubMedCrossRefGoogle Scholar
  146. 146.
    Kaittanis C, Shaffer TM, Bolaender A et al (2015) Multifunctional MRI/PET nanobeacons derived from the in situ self-assembly of translational polymers and clinical cargo through coalescent intermolecular forces. Nano Lett 15:8032–8043PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kaittanis C, Shaffer TM, Ogirala A et al (2014) Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat Commun 5:3384PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Miller MA, Gadde S, Pfirschke C et al (2015) Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med 7:314ra183–314ra183PubMedCrossRefGoogle Scholar
  149. 149.
    van de Ven AL, Abdollahi B, Martinez CJ et al (2013) Modeling of nanotherapeutics delivery based on tumor perfusion. New J Phys 15:55004PubMedCrossRefGoogle Scholar
  150. 150.
    Wu L, Cai X, Nelson K et al (2013) A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res 6:312–325PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Sharma N, Pinnaka AK, Raje M et al (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories 11:86CrossRefGoogle Scholar
  152. 152.
    Kikuchi F, Kato Y, Furihata K et al (2016) Formation of gold nanoparticles by glycolipids of Lactobacillus casei. Sci Rep 6:34626PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Parodi A, Quattrocchi N, van de Ven AL et al (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–68PubMedCrossRefGoogle Scholar
  154. 154.
    Braun GB, Friman T, Pang HB et al (2014) Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nat Mater 13:904–911PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Kim SE, Zhang L, Ma K et al (2016) Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nano 11:977–985CrossRefGoogle Scholar
  156. 156.
    Li M, Li L, Zhan C, Kohane DS (2016) Core-shell nanostars for multimodal therapy and imaging. Theranostics 6:2306–2313PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Chen F, Ellison PA, Lewis CM et al (2013) Chelator-free synthesis of a dual-modality PET/MRI agent. Angewandte Chemie (International ed in English) 52:13319–13323CrossRefGoogle Scholar
  158. 158.
    Chakravarty R, Valdovinos HF, Chen F et al (2014) Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv Mater 26:5119–5123PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Siddiqi KS, Ur Rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11:498PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Tafoya MA, Madi S, Sillerud LO (2016) Superparamagnetic nanoparticle-enhanced MRI of Alzheimer's disease plaques and activated microglia in 3X transgenic mouse brains: contrast optimization. J Magn Reson Imaging. doi: 10.1002/jmri.25563 PubMedGoogle Scholar
  161. 161.
    Madru R, Tran TA, Axelsson J et al (2013) 68Ga-labeled superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am J Nucl Med Mol Imaging 4:60–69PubMedPubMedCentralGoogle Scholar
  162. 162.
    Aghighi M, Golovko D, Ansari C et al (2015) Imaging tumor necrosis with ferumoxytol. PLoS One 10:e0142665PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Khurana A, Chapelin F, Beck G et al (2013) Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology 269:186–197PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Sciallero C, Balbi L, Paradossi G, Trucco A (2016) Magnetic resonance and ultrasound contrast imaging of polymer-shelled microbubbles loaded with iron oxide nanoparticles. R Soc Open Sci 3:160063PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Nissinen T, Nakki S, Laakso H et al (2016) Tailored dual PEGylation of inorganic porous nanocarriers for extremely long blood circulation in vivo. ACS Appl Mater Interfaces 8:32723–32731PubMedCrossRefGoogle Scholar
  166. 166.
    Cui Y, Zhang C, Luo R et al (2016) Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 11:5671–5682PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Jaidev LR, Chellappan DR, Bhavsar DV et al (2017) Multi-functional nanoparticles as theranostic agents for the treatment & imaging of pancreatic cancer. Acta Biomater 49:422–433PubMedCrossRefGoogle Scholar
  168. 168.
    Liu Q, Sun Y, Li C et al (2011) 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5:3146–3157PubMedCrossRefGoogle Scholar
  169. 169.
    Xiang Z, Yang X, Xu J et al (2017) Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials 115:53–64PubMedCrossRefGoogle Scholar
  170. 170.
    Wang Y, Liu Y, Luehmann H et al (2013) Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett 13:581–585PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Perez-Campana C, Gomez-Vallejo V, Puigivila M et al (2013) Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 7:3498–3505PubMedCrossRefGoogle Scholar
  172. 172.
    Perez-Campana C, Gomez-Vallejo V, Martin A et al (2012) Tracing nanoparticles in vivo: a new general synthesis of positron emitting metal oxide nanoparticles by proton beam activation. Analyst 137:4902–4906PubMedCrossRefGoogle Scholar
  173. 173.
    Zhou M, Zhang R, Huang M et al (2010) A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 132:15351–15358PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Thorek DLJ, Das S, Grimm J (2014) Molecular imaging using nanoparticle quenchers of Cerenkov luminescence. Small 10:3729–3734PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Lin X, Xie J, Niu G et al (2011) Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett 11:814–819PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Mead BP, Mastorakos P, Suk JS et al (2016) Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J Control Release 223:109–117PubMedCrossRefGoogle Scholar
  177. 177.
    Ma X, Kang F, Xu F et al (2013) Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+, Yb3+-doped rare-earth microparticles. PLoS One 8:e77926PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Zhenhua H, Liu M, Guo H et al (2016) Image-guided cancer surgery using a novel nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. J Nucl Med 57:59–59Google Scholar
  179. 179.
    Lee B-R, Ko HK, Ryu JH et al (2016) Engineered human ferritin nanoparticles for direct delivery of tumor antigens to lymph node and cancer immunotherapy. Sci Reports 6:35182CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2017

Authors and Affiliations

  • Chrysafis Andreou
    • 1
  • Suchetan Pal
    • 1
  • Lara Rotter
    • 2
  • Jiang Yang
    • 1
  • Moritz F. Kircher
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of NeurologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Center for Molecular Imaging and Nanotechnology (CMINT)Memorial Sloan Kettering Cancer CenterNew YorkUSA
  4. 4.Department of RadiologyWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations